Monotone Hurwitz Numbers in Genus Zero

被引:22
|
作者
Goulden, I. P. [1 ]
Guay-Paquet, Mathieu [1 ]
Novak, Jonathan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz numbers; matrix models; enumerative geometry; MATRIX MODELS; FACTORIZATIONS; ENUMERATION; INTEGRALS; CURVES;
D O I
10.4153/CJM-2012-038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
引用
收藏
页码:1020 / 1042
页数:23
相关论文
共 50 条
  • [41] Combinatorial facets of Hurwitz numbers
    Lando, S. K.
    APPLICATIONS OF GROUP THEORY TO COMBINATORICS, 2008, : 109 - 131
  • [42] On Hurwitz-Severi numbers
    Burman, Yurii
    Shapiro, Boris
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (01) : 155 - 167
  • [43] BKP and projective Hurwitz numbers
    Sergey M. Natanzon
    Aleksandr Yu. Orlov
    Letters in Mathematical Physics, 2017, 107 : 1065 - 1109
  • [44] Simple Hurwitz numbers of a disk
    S. M. Natanzon
    Functional Analysis and Its Applications, 2010, 44 : 36 - 47
  • [45] A Monodromy Graph Approach to the Piecewise Polynomiality of Simple, Monotone and Grothendieck Dessins d'enfants Double Hurwitz Numbers
    Hahn, Marvin Anas
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 729 - 766
  • [47] Laplacian growth in a channel and Hurwitz numbers
    Zabrodin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (18)
  • [48] Wall crossings for double Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1894 - 1937
  • [49] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [50] Black holes and Hurwitz class numbers
    Kachru, Shamit
    Tripathy, Arnav
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (12):