Texture based segmentation of breast DCE-MRI

被引:0
|
作者
Gong, Yang Can [1 ]
Brady, Michael [1 ]
机构
[1] Univ Oxford, Wolfson Med Vis Lab, Oxford OX1 2JD, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast dynamic contrast enhanced MRI (DCE-MRI) segmentation, based on the differential enhancement of image intensities, can help the clinician detect suspicious regions. Motivated by the recent success of texture learning and segmentation, we propose a novel segmentation method based on texture properties. The segmentation method consists of generating a library of texture primitives "textons", and then classifying each novel into different tissue classed using textons and vector attributes. A Markov Random Measure field (MRF) method is combined with texture information to realise the spatial coherence. To evaluate our framework, twenty patients' MRIs from our local hospital were used for texture learning, and a further twenty patients' MRI were used for testing.
引用
收藏
页码:689 / 695
页数:7
相关论文
共 50 条
  • [21] Bounding boxes for weakly-supervised breast cancer segmentation in DCE-MRI
    Zhong, Yuming
    Xu, Zeyan
    Han, Chu
    Liu, Zaiyi
    Wang, Yi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [22] Tumor Segmentation in Breast DCE-MRI Slice Using Deep Learning Methods
    Carvalho, Edson Damasceno
    Veloso Silva, Romuere Rodrigues
    Mathew, Mano Joseph
    Duarte Araujo, Flavio Henrique
    de Carvalho Filho, Antonio Oseas
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [23] Comparison of Multi-resolution Analysis Patterns for Texture Classification of Breast Tumors Based on DCE-MRI
    Tzalavra, Alexia
    Dalakleidi, Kalliopi
    Zacharaki, Evangelia I.
    Tsiaparas, Nikolaos
    Constantinidis, Fotios
    Paragios, Nikos
    Nikita, Konstantina S.
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 296 - 304
  • [24] HRCUNet: Hierarchical Region Contrastive Learning for Segmentation of Breast Tumors in DCE-MRI
    He, Jiezhou
    Luo, Zhiming
    Peng, Wei
    Su, Songzhi
    Zhao, Xue
    Zhang, Guojun
    Li, Shaozi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2025, 37 (01):
  • [25] Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI
    Zhou, Lei
    Zhang, Yuzhong
    Zhang, Jiadong
    Qian, Xuejun
    Gong, Chen
    Sun, Kun
    Ding, Zhongxiang
    Wang, Xing
    Li, Zhenhui
    Liu, Zaiyi
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 244 - 258
  • [26] A Novel 3-D-CAD for Breast and Lesion Segmentation of Axial Breast DCE-MRI
    Besbes, Feten
    Gargouri, Norhene
    Damak, Alima
    Feki, Wiem
    Sellami, Dorra
    Fourati, Hela
    Mnif, Zineb
    Besbes, Hatem
    JOURNAL OF TESTING AND EVALUATION, 2021, 49 (05) : 3063 - 3080
  • [27] A Gradient-Based Approach for Breast DCE-MRI Analysis
    Losurdo, L.
    Basile, T. M. A.
    Fanizzi, A.
    Bellotti, R.
    Bottigli, U.
    Carbonara, R.
    Dentamaro, R.
    Diacono, D.
    Didonna, V
    Lombardi, A.
    Giotta, F.
    Guaragnella, C.
    Mangia, A.
    Massafra, R.
    Tamborra, P.
    Tangaro, S.
    La Forgia, D.
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [28] Pathophysiological mapping of tumor habitats in the breast in DCE-MRI using molecular texture descriptor
    da Silva Neto, Otilio Paulo
    Lima Araujo, Jose Denes
    Caldas Oliveira, Ana Gabriela
    Cutrim, Mara
    Silva, Aristofanes Correa
    Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 106 : 114 - 125
  • [29] Texture Analysis of DCE-MRI Intratumoral Subregions to Identify Benign and Malignant Breast Tumors
    Zhang, Bin
    Song, Lirong
    Yin, Jiandong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [30] Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
    Jiao, Han
    Jiang, Xinhua
    Pang, Zhiyong
    Lin, Xiaofeng
    Huang, Yihua
    Li, Li
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020 (2020)