Multispectral face spoofing detection using VIS-NIR imaging correlation

被引:7
|
作者
Sun, Xudong [1 ,2 ,3 ]
Huang, Lei [1 ]
Liu, Changping [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp & Control Engn, Zhongguancun East Rd, Beijing 100190, Peoples R China
[3] Room 501,95 Zhongguancun East Rd, Beijing 100190, Peoples R China
关键词
Biometric security; face spoofing detection; multispectral biometric; RECOGNITION;
D O I
10.1142/S0219691318400039
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the wide applications of face recognition techniques, spoofing detection is playing an important role in the security systems and has drawn much attention. This research presents a multispectral face anti-spoofing method working with both visible (VIS) and near-infrared (NIR) spectra imaging, which exploits VIS-NIR image consistency for spoofing detection. First, we use part-based methods to extract illumination robust local descriptors, and then the consistency is calculated to perform spoofing detection. In order to further exploit multispectral correlation in local patches and to be free from manually chosen regions, we learn a confidence factor map for all the patches, which is used in final classifier. Experimental results of self-collected datasets, public Msspoof and PolyU-HSFD datasets show that the proposed approach gains promising results for both intra-dataset and cross-dataset testing scenarios, and that our method can deal with different illumination and both photo and screen spoofing.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Design of a aberration-corrected VIS-NIR imaging spectrograph
    Chuang, Kai-Ping
    Wang, Hau-Wei
    Yang, Fu-Shiang
    OPTICS COMMUNICATIONS, 2007, 272 (02) : 330 - 335
  • [22] Sex determination of silkworm pupae using VIS-NIR hyperspectral imaging combined with chemometrics
    Tao, Dan
    Wang, Zhengrong
    Li, Guanglin
    Xie, Lin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2019, 208 : 7 - 12
  • [23] VIS-NIR spectroscopy for the detection of peanuts traces in powder food
    Cuadrado Dominguez, Teresa R.
    Ghosh, Satyabrata
    Barreiro, Pilar
    Lleo Garcia, Lourdes
    Diezma, Belen
    Michel Roger, Jean
    Garcia Lacarra, Teresa
    VII CONGRESO IBERICO DE AGROINGENIERIA Y CIENCIAS HORTICOLAS: INNOVAR Y PRODUCIR PARA EL FUTURO. INNOVATING AND PRODUCING FOR THE FUTURE, 2014, : 1265 - 1270
  • [24] A new quantitative index for the assessment of tomato quality using Vis-NIR hyperspectral imaging
    Shao, Yuanyuan
    Shi, Yukang
    Qin, Yongdong
    Xuan, Guantao
    Li, Jing
    Li, Quankai
    Yang, Fengjuan
    Hu, Zhichao
    FOOD CHEMISTRY, 2022, 386
  • [25] Potential of Vis-NIR spectroscopy for detection of chilling injury in kiwifruit
    Wang, Zhen
    Kunnemeyer, Rainer
    McGlone, Andrew
    Burdon, Jeremy
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2020, 164
  • [26] Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging
    Che, Wenkai
    Sun, Laijun
    Zhang, Qian
    Tan, Wenyi
    Ye, Dandan
    Zhang, Dan
    Liu, Yangyang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 146 : 12 - 21
  • [27] Non-destructive detection of blackspot in potatoes. by Vis-NIR and SWIR hyperspectral imaging
    Lopez-Maestresalas, Ainara
    Keresztes, Janos C.
    Goodarzi, Mohammad
    Arazuri, Silvia
    Jaren, Carmen
    Saeys, Wouter
    FOOD CONTROL, 2016, 70 : 229 - 241
  • [28] Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance imaging
    Munera, Sandra
    Amigo, Jose Manuel
    Blasco, Jose
    Cubero, Sergio
    Talens, Pau
    Aleixos, Nuria
    JOURNAL OF FOOD ENGINEERING, 2017, 214 : 29 - 39
  • [29] Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique
    Xie, Anguo
    Sun, Da-Wen
    Xu, Zhongyue
    Zhu, Zhiwei
    TALANTA, 2015, 139 : 208 - 215
  • [30] TURF-BOX: an active lighting multispectral imaging system with led VIS-NIR sources for monitoring of vegetated surfaces
    Motisi, A.
    Impollonia, G.
    Minacapilli, M.
    Orlando, S.
    Sarno, M.
    INTERNATIONAL SYMPOSIUM ON PRECISION MANAGEMENT OF ORCHARDS AND VINEYARDS, 2021, 1314 : 383 - 390