Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: A combination of visual image and particle temperature

被引:60
|
作者
Bu, Changsheng [1 ]
Liu, Daoyin [1 ]
Chen, Xiaoping [1 ]
Pallares, David [2 ]
Gomez-Barea, Alberto [3 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Minist Educ, Key Lab Energy Thermal Convers & Control, Nanjing 210096, Jiangsu, Peoples R China
[2] Chalmers, Environm & Energy Dept, S-41296 Gothenburg, Sweden
[3] Univ Seville, Chem & Environm Engn Dept, Seville 41092, Spain
基金
中国国家自然科学基金;
关键词
Oxyfuel; O-2/CO2; atmosphere; Fluidized bed; Devolatilization; Ignition; OXY-FUEL COMBUSTION; HYDROGEN-PRODUCTION SYSTEMS; PULVERIZED COAL; CO2; CAPTURE; DIFFERENT RANKS; CHAR PARTICLES; DEVOLATILIZATION; GASIFICATION; PYROLYSIS; ELECTRICITY;
D O I
10.1016/j.apenergy.2013.10.040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Single coal particle ignition behavior was studied in a two-dimensional (200 mm x 20 mm x 400 mm) fluidized bed under O-2/N-2 and O-2/CO2 atmosphere with O-2 volume concentration in the range of 0-40%, by a combination of visual observation of the volatile flame and measurement of the particle center temperature. A piece of transparent quartz glass was used as the front wall of the fluidized bed to allow visual observation. The investigated fuel particles were spherical sub-bituminous coal particles with diameter in a range of 6-13 mm, which were artificially carved from selected original coal particles. The volatile combustion flame was recorded by a color video camera to analyze its ignition time delay and extinction behavior. The temperature in the particle center was measured by a very thin thermocouple to follow the particle heating process. Results indicate that under O-2/CO2 atmosphere the ignition delay time is much longer than in O-2/N-2 atmosphere. The devolatilization process is controlled by internal and external heat transfer but it is almost unaffected by atmosphere at the same O-2 concentration. The effect of volatile combustion on heating and extinction delay time can be neglected for larger coal particles. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 50 条
  • [31] Experimental Investigation and Comparison of Pulverized Coal Combustion in CO2/O2− and N2/O2−Atmospheres
    Johannes Hees
    Diego Zabrodiec
    Anna Massmeyer
    Martin Habermehl
    Reinhold Kneer
    Flow, Turbulence and Combustion, 2016, 96 : 417 - 431
  • [32] Attrition of high ash Ekibastuz coal in a bench scale fluidized bed rig under O2/N2 and O2/CO2 environments
    Suleimenova, Botakoz
    Aimbetov, Berik
    Shah, Dhawal
    Anthony, Edward J.
    Sarbassov, Yerbol
    FUEL PROCESSING TECHNOLOGY, 2021, 216
  • [33] Effect of the Particle Size on Co-combustion of Municipal Solid Waste and Biomass Briquette under N2/O2 and CO2/O2 Atmospheres
    Li, Yongling
    Xing, Xianjun
    Xu, Baojie
    Xing, Yongqiang
    Zhang, Xuefei
    Yang, Jing
    Xing, Jishou
    ENERGY & FUELS, 2017, 31 (01) : 932 - 940
  • [34] Numerical Study of MILD Combustion for Pulverized Coal in O2/N2, O2/CO2, and O2/H2O Atmospheres
    Tu, Yaojie
    Kong, Fanhai
    Su, Kai
    Liu, Hao
    Zheng, Chuguang
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 157 - 163
  • [35] In situ experimental and modeling study on coal char combustion for coarse particle with effect of gasification in air (O2/N2) and O2/CO2 atmospheres
    Shen, Zhongjie
    Zhang, Liqi
    Liang, Qinfeng
    Xu, Jianliang
    Lin, Kuangfei
    Liu, Haifeng
    FUEL, 2018, 233 : 177 - 187
  • [36] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412
  • [37] Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O2/N2, O2/CO2, and O2/H2O Atmospheres
    Lei, Kai
    Ye, Buqing
    Cao, Jin
    Zhang, Rui
    Liu, Dong
    ENERGIES, 2017, 10 (11):
  • [38] Study on the surface active reactivity of coal char conversion in O2/CO2 and O2/N2 atmospheres
    Liu, Yang
    Fu, Peifang
    Zhang, Bin
    Yue, Fang
    Zhou, Huaichun
    Zheng, Chuguang
    FUEL, 2016, 181 : 1244 - 1256
  • [39] Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres
    Zhuo, Zhongxu
    Liu, Jingyong
    Sun, Shuiyu
    Sun, Jian
    Kuo, Jiahong
    Chang, Kenlin
    Fu, Jiewen
    Wang, Yujie
    APPLIED THERMAL ENGINEERING, 2017, 111 : 87 - 94
  • [40] Decomposition of key minerals in coal gangues during combustion in O2/N2 and O2/CO2 atmospheres
    Zhang, Yuanyuan
    Zhang, Zhezi
    Zhu, Mingming
    Cheng, Fangqin
    Zhang, Dongke
    APPLIED THERMAL ENGINEERING, 2019, 148 : 977 - 983