Machine learning-based inverse design for single-phase high entropy alloys

被引:12
|
作者
Zeng, Yingzhi [1 ]
Man, Mengren [1 ]
Ng, Chee Koon [2 ]
Wuu, Delvin [2 ]
Lee, Jing Jun [2 ]
Wei, Fengxia [2 ]
Wang, Pei [2 ,3 ]
Bai, Kewu [1 ]
Cheh Tan, Dennis Cheng [2 ]
Zhang, Yong-Wei [1 ]
机构
[1] Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632, Singapore
[2] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
[3] Singapore Inst Technol, Engn Cluster, Singapore 519961, Singapore
关键词
SOLID-SOLUTION PHASE; GENETIC ALGORITHM; STABILITY; EXPLORATION; PREDICTION; SELECTION;
D O I
10.1063/5.0109491
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we develop an inverse design framework to search for single-phase high entropy alloys (HEAs) subjected to specified phase targets and constraints. This framework is based on the fast grid search in the composition-temperature space, enabled by a highly accurate and efficient machine learning model trained by a huge amount of data. Using the framework, we search through the entire quaternary, quinary, and senary alloy systems, formed by Al, Co, Cr, Cu, Fe, Mn, Ni, and Ti, to identify three types of HEAs: (1) the single-phase FCC HEA with the highest Al content; (2) the single-phase FCC HEA with lower equilibrium temperatures; and (3) single-phase BCC HEAs with Al as the principal element. For the first time, we reveal that the highest Al content in single-phase FCC HEAs is 0.15 in mole fraction, which is higher than the Al contents in all reported single-phase FCC HEAs. The identified HEAs for the quaternary, quinary, and senary groups are Al0.15Co0.34Cr0.16Ni0.35, Al0.15Co0.35Cr0.1Fe0.05Ni0.35, and Al0.15Co0.36Cr0.06Fe0.06Mn0.01Ni0.36, respectively. All the designed HEAs are verified by the equilibrium calculations with Thermo-Calc software and the TCHEA3 database. We further conduct Scheil-Gulliver calculations and experimental fabrications and characterizations for the designed HEAs, to verify the formation of the targeted phases at non-equilibrium conditions. This work demonstrates a viable approach to design HEAs with specified phase targets and constraints. (C) 2022 Author(s).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation
    Lee, Soo Young
    Byeon, Seokyeong
    Kim, Hyoung Seop
    Jin, Hyungyu
    Lee, Seungchul
    MATERIALS & DESIGN, 2021, 197
  • [32] Single-phase lightweight high-entropy alloys with enhanced mechanical properties
    Jeong, Il-Seok
    Lee, Joo-Hyoung
    MATERIALS & DESIGN, 2023, 227
  • [33] Formation and Superconductivity of Single-Phase High-Entropy Alloys with a Tetragonal Structure
    Liu, Bin
    Wu, JiFeng
    Cui, Yanwei
    Zhu, Qinqing
    Xiao, Guorui
    Wang, Hangdong
    Wu, Siqi
    Cao, Guanghan
    Ren, Zhi
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (04) : 1130 - 1137
  • [34] Tuning Elinvar effect in severely distorted single-phase high entropy alloys
    Wang, H.
    He, Q. F.
    Wang, A. D.
    Yang, Y.
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (05)
  • [35] Design of high bulk moduli high entropy alloys using machine learning
    Kandavalli, Manjunadh
    Agarwal, Abhishek
    Poonia, Ansh
    Kishor, Modalavalasa
    Ayyagari, Kameswari Prasada Rao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] Design of high bulk moduli high entropy alloys using machine learning
    Manjunadh Kandavalli
    Abhishek Agarwal
    Ansh Poonia
    Modalavalasa Kishor
    Kameswari Prasada Rao Ayyagari
    Scientific Reports, 13
  • [37] Machine learning guided phase formation prediction of high entropy alloys
    Qu N.
    Liu Y.
    Zhang Y.
    Yang D.
    Han T.
    Liao M.
    Lai Z.
    Zhu J.
    Zhang L.
    Materials Today Communications, 2022, 32
  • [38] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [39] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [40] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192