Physical Properties of Particulate Matter Emitted from Combustion of Coals of Various Ranks in O2/N2 and O2/CO2 Environments

被引:30
|
作者
Kazanc, Feyza [1 ]
Levendis, Yiannis A. [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
FINE ASH FORMATION; PULVERIZED-COAL; SIZE DISTRIBUTION; PARTICLE FORMATION; SINGLE PARTICLES; MINERAL MATTER; FRAGMENTATION; MIXTURES; AIR; EMISSIONS;
D O I
10.1021/ef301087r
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work examined the particulate emissions from pulverized coals burning under either conventional or oxyfuel combustion conditions. Oxyfuel combustion is a process that takes place in O-2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases into the boiler; this is done to moderate the high temperatures caused by the elevated oxygen partial pressure therein. In this study, combustion took place in a laboratory laminar-flow drop-tube furnace (DTF) in environments containing various mole fractions of oxygen in either nitrogen or carbon dioxide background gases. A bituminous coal, a sub-bituminous coal, and a lignite were burned at a DTF temperature of 1400 K. Trimodal ash particle size distributions were observed with peaks in the submicrometer region (similar to 0.2 mu m), as well as in the supermicrometer region (similar to 5 mu m and >10 mu m). Both submicrometer and supermicrometer particulate emission yields of all three coals were typically lower in O-2/CO2 than in O-2/N-2 environments. Emission yields typically increased with increasing oxygen concentration in the furnace, with an exception noted at moderate oxygen mole fractions (20%-30%) in CO2, where significant amounts of unburned carbon were detected. Submicrometer particulate yields were found to be comparable in the effluents of all three coals, independently of their ash contents, whereas supermicrometer particulate yields were nearly analogous to the ash contents of the three coals. Scanning electron microscopy (SEM) revealed that submicrometer particles were spherical, whereas supermicrometer particles were often of irregular shapes, fractured spheres, and spheres with small particles attached to their surface.
引用
收藏
页码:7127 / 7139
页数:13
相关论文
共 50 条
  • [31] Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O2/N2, O2/CO2, and O2/H2O Atmospheres
    Lei, Kai
    Ye, Buqing
    Cao, Jin
    Zhang, Rui
    Liu, Dong
    ENERGIES, 2017, 10 (11):
  • [32] Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, Zhiyi
    Fan, Yunxiang
    ENERGY, 2015, 90 : 1066 - 1074
  • [33] Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres
    He, Yizhuo
    Zou, Chun
    Song, Yu
    Luo, Jianghui
    Jia, Huiqiao
    Chen, Wuzhong
    Zheng, Junmei
    Zheng, Chuguang
    ENERGY, 2017, 141 : 1429 - 1438
  • [34] Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, ZhiYi
    BIORESOURCE TECHNOLOGY, 2011, 102 (02) : 1879 - 1885
  • [35] A Comparison of Combustion of Coal Chars in O2/CO2 and O2/N2 Mixtures - Isothermal TGA Studies
    Liu, Hao
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2009, 7
  • [36] A comparison of combustion of coal chars in O2/CO2 and O2/N2 mixtures - Isothermal TGA studies
    Liu, Hao
    International Journal of Chemical Reactor Engineering, 2009, 7
  • [37] Thermogravimetric characteristics and combustion emissions of rubbers and polyvinyl chloride in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, ZhiYi
    Zhou, DaoXi
    Chen, Yong
    FUEL, 2013, 104 : 508 - 514
  • [38] Combustion characteristics and kinetics of DPR Korea's anthracite in O2/N2 and O2/CO2 atmosphere
    Yongju, O.
    Zhang, Yongsheng
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (22) : 12897 - 12905
  • [39] Simulation of Soot Formation in Pulverized Coal Combustion under O2/N2 and O2/CO2 Atmospheres
    Zheng, Jianxiang
    Du, Mengxia
    Xiao, Zuxin
    Zhu, Xiuli
    ACS OMEGA, 2024, 9 (20): : 22051 - 22064
  • [40] Decomposition of key minerals in coal gangues during combustion in O2/N2 and O2/CO2 atmospheres
    Zhang, Yuanyuan
    Zhang, Zhezi
    Zhu, Mingming
    Cheng, Fangqin
    Zhang, Dongke
    APPLIED THERMAL ENGINEERING, 2019, 148 : 977 - 983