Spatio-temporal modeling of neural source activation from EEG data

被引:0
|
作者
Albu, Alexandra Branzan [1 ]
Mahajan, Sunny Vardhan [1 ]
Zeman, Philip M. [1 ]
Tanaka, James W. [1 ]
机构
[1] Univ Victoria, Dept ECE, Victoria, BC V8W 2Y2, Canada
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a new computer-vision based information visualization paradigm for the electrophysiological study of face recognition. The proposed approach first generates video sequences of voltage maps from EEG data. Next, projections of active sources are detected in each frame using colour information and spatiotemporal consistency. The evolution of source activation is thus translated into a deformable motion of 2D patterns. Hence, the last step of the proposed approach builds a new motion representation, called the Spatio-Temporal Activation Response (STAR), which extracts stimulus- and subject-specific information about neural source activations occurring during the experiment. It is shown that STAR is able to capture relevant information about differences in the cognitive representations elicited by two different visual stimuli.
引用
收藏
页码:1014 / 1017
页数:4
相关论文
共 50 条
  • [41] Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
    Moritz Dannhauer
    Eric Lämmel
    Carsten H. Wolters
    Thomas R. Knösche
    Brain Topography, 2013, 26 : 229 - 246
  • [42] The spatio-temporal mapping of epileptic networks: Combination of EEG-fMRI and EEG source imaging
    Vulliemoz, S.
    Thornton, R.
    Rodionov, R.
    Carmichael, D. W.
    Guye, M.
    Lhatoo, S.
    McEvoy, A. W.
    Spinelli, L.
    Michel, C. M.
    Duncan, J. S.
    Lemieux, L.
    NEUROIMAGE, 2009, 46 (03) : 834 - 843
  • [43] EEG dynamic source imaging using a regularized optimization with spatio-temporal constraints
    Kouti, Mayadeh
    Ansari-Asl, Karim
    Namjoo, Ehsan
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (10) : 3073 - 3088
  • [44] Improving EEG Source Localization through Spatio-temporal Sparse Bayesian Learning
    Hashemi, Ali
    Haufe, Stefan
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1935 - 1939
  • [45] EEG Source Imaging With Spatio-Temporal Tomographic Nonnegative Independent Component Analysis
    Valdes-Sosa, Pedro A.
    Vega-Hernandez, Mayrim
    Miguel Sanchez-Bornot, Jose
    Martinez-Montes, Eduardo
    Antonieta Bobes, Maria
    HUMAN BRAIN MAPPING, 2009, 30 (06) : 1898 - 1910
  • [46] Intention Recognition from Spatio-Temporal Representation of EEG Signals
    Yue, Lin
    Tian, Dongyuan
    Jiang, Jing
    Yao, Lina
    Chen, Weitong
    Zhao, Xiaowei
    DATABASES THEORY AND APPLICATIONS (ADC 2021), 2021, 12610 : 1 - 12
  • [47] Spectral Spatio-Temporal Template Extraction from EEG Signals
    Ostadabbas, Sarah
    Jafari, Roozbeh
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4678 - 4682
  • [48] A Spatio-Temporal Switchable Data Prefetcher for Convolutional Neural Networks
    Jang, Jihoon
    Kim, Hyun
    Lee, Hyokeun
    2023 20TH INTERNATIONAL SOC DESIGN CONFERENCE, ISOCC, 2023, : 141 - 142
  • [49] Summarizing non-stationarity in spatio-temporal neural data
    Harris, Brendan
    Fulcher, Ben
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 : S44 - S45
  • [50] Spatio-temporal neural data mining architecture in learning robots
    Malone, J
    Elshaw, M
    McGarry, K
    Bowerman, C
    Wermter, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 2802 - 2807