Equivalence of restricted Boltzmann machines and tensor network states

被引:180
|
作者
Chen, Jing [1 ,2 ,4 ]
Cheng, Song [1 ,2 ]
Xie, Haidong [1 ,2 ]
Wang, Lei [1 ]
Xiang, Tao [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China
[4] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
基金
中国国家自然科学基金;
关键词
MATRIX RENORMALIZATION-GROUP; PRODUCT STATES; DEEP; ENTANGLEMENT; MODELS;
D O I
10.1103/PhysRevB.97.085104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On the equivalence of Hopfield networks and Boltzmann Machines
    Barra, Adriano
    Bernacchia, Alberto
    Santucci, Enrica
    Contucci, Pierluigi
    NEURAL NETWORKS, 2012, 34 : 1 - 9
  • [22] Generalising the Discriminative Restricted Boltzmann Machines
    Cherla, Srikanth
    Tran, Son N.
    Garcez, Artur d'Avila
    Weyde, Tillman
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 111 - 119
  • [23] Nonequilibrium thermodynamics of restricted Boltzmann machines
    Salazar, Domingos S. P.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [24] INFORMATION AND REGULARIZATION IN RESTRICTED BOLTZMANN MACHINES
    Vera, Matias
    Rey Vega, Leonardo
    Piantanida, Pablo
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3155 - 3159
  • [25] Restricted Boltzmann machines in quantum physics
    Roger G. Melko
    Giuseppe Carleo
    Juan Carrasquilla
    J. Ignacio Cirac
    Nature Physics, 2019, 15 : 887 - 892
  • [26] Temperature based Restricted Boltzmann Machines
    Guoqi Li
    Lei Deng
    Yi Xu
    Changyun Wen
    Wei Wang
    Jing Pei
    Luping Shi
    Scientific Reports, 6
  • [27] Restricted Boltzmann Machines for Gender Classification
    Mansanet, Jordi
    Albiol, Alberto
    Paredes, Roberto
    Villegas, Mauricio
    Albiol, Antonio
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I, 2014, 8814 : 274 - 281
  • [28] Training restricted Boltzmann machines: An introduction
    Fischer, Asja
    Igel, Christian
    PATTERN RECOGNITION, 2014, 47 (01) : 25 - 39
  • [29] Restricted Boltzmann machines in quantum physics
    Melko, Roger G.
    Carleo, Giuseppe
    Carrasquilla, Juan
    Cirac, J. Ignacio
    NATURE PHYSICS, 2019, 15 (09) : 887 - 892
  • [30] Temperature based Restricted Boltzmann Machines
    Li, Guoqi
    Deng, Lei
    Xu, Yi
    Wen, Changyun
    Wang, Wei
    Pei, Jing
    Shi, Luping
    SCIENTIFIC REPORTS, 2016, 6