Detection of Hard Exudates in Retinopathy Images

被引:4
|
作者
Verma, Satya Bhushan [1 ]
Yadav, Abhay Kumar [1 ]
机构
[1] Cent Univ, BBA Univ, Dept Comp Sci, Lucknow, Uttar Pradesh, India
关键词
Hard Exudates; Retinopath; Fundus Image; Cotton Wool Spot; Retina;
D O I
10.14201/ADCAIJ2019844148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The tissue layer located at the back of the eye is known as retina which converts the incoming light into nerve signals and those signals are sent to the brain for understanding. The damage onto the retina is termed as retinopathy and that may lead to vision weakening or vision loss. The hard exudates are small white or yellowish white deposits with their edges being clear and sharp. In the proposed methods we take color image of retina then extract the green channel of that image then apply top hat transformation and bottom hat transformation on that image. The DIARETDB1 and High-Resolution Fundus (HRF) databases are used for performance evaluation of the proposed method. The proposed technique achieves accuracy 97%, sensitivity 95%, and specificity 96% and it takes average 5.6135 second for detection of hard exudates in an image.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [21] Hierarchical classifier for soft and hard exudates detection of retinal fundus images
    Kavitha, M.
    Palani, S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (05) : 2511 - 2528
  • [22] Classification of diabetic retinopathy based on hard exudates patterns, using images processing and SVM.
    Cisneros-Guzman, Fernanda
    Tovar-Arriaga, Saul
    Pedraza, Carlos
    Gonzalez-Gutierrez, Arturo
    2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,
  • [23] A Computational-Intelligence-Based Approach for Detection of Exudates in Diabetic Retinopathy Images
    Osareh, Alireza
    Shadgar, Bita
    Markham, Richard
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (04): : 535 - 545
  • [24] Automatic Detection of Hard Exudates in Diabetic Retinopathy Using Morphological Segmentation and Fuzzy Logic
    Basha, S. Saheb
    Prasad, K. Satya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (12): : 211 - 218
  • [25] Identifying Exudates from Diabetic Retinopathy Images
    Sindhura, A.
    Kumar, S. Deva
    Sajja, V. Ramakrishna
    Rao, N. Gnaneswara
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2016, : 132 - 136
  • [26] Effect of danaparoid sodium on hard exudates in diabetic retinopathy
    vanderPijl, JW
    vanderWoude, FJ
    Swart, W
    vanEs, LA
    Lemkes, HHPJ
    LANCET, 1997, 350 (9093): : 1743 - 1745
  • [27] Detection of Exudates in Diabetic Retinopathy: A Review
    Zohora, Syeda Erfana
    Chakraborty, Sayan
    Khan, A. M.
    Dey, Nilanjan
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 2063 - 2068
  • [28] Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images
    Kadan, Anoop Balakrishnan
    Subbian, Perumal Sankar
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (07)
  • [29] Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images
    Anoop Balakrishnan Kadan
    Perumal Sankar Subbian
    Journal of Medical Systems, 2019, 43
  • [30] Detection of Hard Exudates in Retinal Images Using a Radial Basis Function Classifier
    María García
    Clara I. Sánchez
    Jesús Poza
    María I. López
    Roberto Hornero
    Annals of Biomedical Engineering, 2009, 37 : 1448 - 1463