Machine-learning approach expands the repertoire of anti-CRISPR protein families

被引:65
|
作者
Gussow, Ayal B. [1 ]
Park, Allyson E. [2 ]
Borges, Adair L. [2 ]
Shmakov, Sergey A. [1 ]
Makarova, Kira S. [1 ]
Wolf, Yuri I. [1 ]
Bondy-Denomy, Joseph [2 ]
Koonin, Eugene V. [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
[2] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
关键词
INHIBITION; MECHANISM; CLASSIFICATION; EVOLUTION; DISCOVERY; RESOURCE; GENOMICS;
D O I
10.1038/s41467-020-17652-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CRISPR-Cas are adaptive bacterial and archaeal immunity systems that have been harnessed for the development of powerful genome editing and engineering tools. In the incessant host-parasite arms race, viruses evolved multiple anti-defense mechanisms including diverse anti-CRISPR proteins (Acrs) that specifically inhibit CRISPR-Cas and therefore have enormous potential for application as modulators of genome editing tools. Most Acrs are small and highly variable proteins which makes their bioinformatic prediction a formidable task. We present a machine-learning approach for comprehensive Acr prediction. The model shows high predictive power when tested against an unseen test set and was employed to predict 2,500 candidate Acr families. Experimental validation of top candidates revealed two unknown Acrs (AcrIC9, IC10) and three other top candidates were coincidentally identified and found to possess anti-CRISPR activity. These results substantially expand the repertoire of predicted Acrs and provide a resource for experimental Acr discovery.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein
    Bhoobalan-Chitty, Yuvaraj
    Johansen, Thomas Baek
    Di Cianni, Nadia
    Peng, Xu
    CELL, 2019, 179 (02) : 448 - +
  • [42] A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules
    Lim, Donghyun
    Zhou, Qingxuan
    Cox, Kurt J.
    Law, Benjamin K.
    Lee, Miseon
    Kokkonda, Praveen
    Sreekanth, Vedagopuram
    Pergu, Rajaiah
    Chaudhary, Santosh K.
    Gangopadhyay, Soumyashree A.
    Maji, Basudeb
    Lai, Sophia
    Amako, Yuka
    Thompson, David B.
    Subramanian, Hari K. K.
    Mesleh, Michael F.
    Dandik, Vlado
    Clemons, Paul A.
    Wagner, Bridget K.
    Woo, Christina M.
    Church, George M.
    Choudhary, Amit
    NATURE CELL BIOLOGY, 2022, 24 (12) : 1766 - +
  • [43] A CRISPR/Anti-CRISPR Genome Editing Approach Underlines the Synergy of Butanol Dehydrogenases in Clostridium acetobutylicum DSM 792
    Wasels, Francois
    Chartier, Gwladys
    Hocq, Remi
    Ferreira, Nicolas Lopes
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2020, 86 (13)
  • [44] Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6
    Fuchsbauer, Olivier
    Swuec, Paolo
    Zimberger, Claire
    Amigues, Beatrice
    Levesque, Sebastien
    Agudelo, Daniel
    Duringer, Alexis
    Chaves-Sanjuan, Antonio
    Spinelli, Silvia
    Rousseau, Genevieve M.
    Velimirovic, Minja
    Bolognesi, Martino
    Roussel, Alain
    Cambillau, Christian
    Moineau, Sylvain
    Doyon, Yannick
    Goulet, Adeline
    MOLECULAR CELL, 2019, 76 (06) : 922 - +
  • [45] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [46] More challenges for machine-learning protein interactions
    Hamp, Tobias
    Rost, Burkhard
    BIOINFORMATICS, 2015, 31 (10) : 1521 - 1525
  • [47] A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules
    Donghyun Lim
    Qingxuan Zhou
    Kurt J. Cox
    Benjamin K. Law
    Miseon Lee
    Praveen Kokkonda
    Vedagopuram Sreekanth
    Rajaiah Pergu
    Santosh K. Chaudhary
    Soumyashree A. Gangopadhyay
    Basudeb Maji
    Sophia Lai
    Yuka Amako
    David B. Thompson
    Hari K. K. Subramanian
    Michael F. Mesleh
    Vlado Dančík
    Paul A. Clemons
    Bridget K. Wagner
    Christina M. Woo
    George M. Church
    Amit Choudhary
    Nature Cell Biology, 2022, 24 : 1766 - 1775
  • [48] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)
  • [49] MACE: A Machine-learning Approach to Chemistry Emulation
    Maes, Silke
    De Ceuster, Frederik
    van de Sande, Marie
    Decin, Leen
    ASTROPHYSICAL JOURNAL, 2024, 969 (02):
  • [50] A machine-learning approach to predict postprandial hypoglycemia
    Seo, Wonju
    Lee, You-Bin
    Lee, Seunghyun
    Jin, Sang-Man
    Park, Sung-Min
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)