3D Rosa centifolia-like CeO2 encapsulated with N-doped carbon as an enhanced electrocatalyst for Zn-air batteries

被引:43
|
作者
Kang, Yumao [1 ]
Wang, Wei [2 ]
Li, Jinmei [3 ,4 ]
Mi, Yajun [1 ]
Gong, Hongyan [1 ]
Lei, Ziqiang [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Gansu Polymer Mat, Minist Educ China,Key Lab Ecoenvironm Related Pol, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Chem & Biol Engn, Lanzhou 730070, Peoples R China
[3] Lanzhou Univ, Coll Chem & Chem Engn, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China
[4] Lanzhou Univ, Coll Chem & Chem Engn, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Rosa centifolia-like CeO2; Oxygen vacancies; Oxygen reduction reaction; Oxygen evolution reaction; Zn-air batteries; FUNCTIONALIZED GRAPHENE OXIDE; OXYGEN REDUCTION; POROUS CARBON; BIFUNCTIONAL ELECTROCATALYST; NITROGEN; CO; NANOSHEETS; COBALT; MOF; PERFORMANCE;
D O I
10.1016/j.jcis.2020.06.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reasonable design and synthesis of high-efficiency rare earth oxides-based materials as alternatives to noble-metal catalysts are of great significance for oxygen electrocatalysis. Herein, we report three-dimension (3D) Rosa centifolia-like CeO2 encapsulated with N-doped carbon (NC) composites (CeO2@NC) for enhancing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities. This synthetic method allows CeO2 to tune the oxygen vacancy concentration and electronic structure of a series of CeO2@NC catalysts due to its large oxygen-storage-capacity (OSC) property. Moreover, benefiting from the exposed active sites in NC as well as the synergy between CeO2 and NC, among as-prepared samples, the resultant CeO2@NC-900 delivers a half-wave potential (E-1/2) of 0.854 V, which is more positive compared with counterpart of NC-900 (0.806 V) and even comparable to that of commercial Pt/C catalyst (0.855 V). This indicates that the ORR electrocatalytic activity of CeO2@NC-900 is significantly improved. Meanwhile, CeO2@NC-900 exhibits satisfactory performance toward OER. For practical application, the CeO2@NC-900 involved rechargeable Zn-air battery possesses excellent energy efficiency, superior stability, and large energy density (666.1 Wh kg(Zn)(-1) at 5 mA cm(-2)). This approach provides a valid way to develop advanced rare earth oxides-based materials for energy applications. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:796 / 804
页数:9
相关论文
共 50 条
  • [41] Co5.47N loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn-air battery
    Rong, Zichao
    Dong, Chenlong
    Zhang, Shaoning
    Dong, Wujie
    Huang, Fuqiang
    NANOSCALE, 2020, 12 (10) : 6089 - 6095
  • [42] N,S-Codoped Carbon Nanostructures Encapsulated with FeNi Nanoparticles as a Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries
    Li, Xiangyi
    Liu, Yijiang
    Wen, Jikai
    Qing, Baoyu
    Yang, Mei
    Liu, Bei
    Chen, Hongbiao
    Li, Huaming
    ACS APPLIED NANO MATERIALS, 2023, 6 (04) : 2719 - 2728
  • [43] Fabricating 3D ultra-thin N-doped porous graphene-like catalysts based on polymerized amino acid metal chelates as an efficient oxygen electrocatalyst for Zn-air batteries
    Zhang, Yunxiao
    Xiao, Wenhua
    Yin, Yuan
    Peng, De Zheng
    Wang, Hongqiang
    Zhou, Minjie
    Hou, Zhaohui
    Liu, Yu
    He, Binhong
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (35) : 17032 - 17039
  • [44] Molten-Salt-Assisted Synthesis of 3D Holey N-Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries
    Cui, Huijuan
    Jiao, Menggai
    Chen, Ya-Nan
    Guo, Yibo
    Yang, Leping
    Xie, Zhaojun
    Zhou, Zhen
    Guo, Shaojun
    SMALL METHODS, 2018, 2 (10):
  • [45] Regulation of the B Site at La(Ni0.1)MnO3 Perovskite Decorated with N-Doped Carbon for a Bifunctional Electrocatalyst in Zn-Air Batteries
    Shi, Weiyi
    Dong, Xinran
    Luo, Yan
    Wang, Ruilin
    Wang, Gang
    Chen, Jinwei
    Liu, Can
    Zhang, Jie
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (06) : 2687 - 2697
  • [46] Scalable Synthesis of Fe/N-Doped Porous Carbon Nanotube Frameworks for Aqueous Zn-Air Batteries
    Li, Fuyun
    Li, Heng
    Liu, Xiaoxiao
    Wang, Libin
    Lu, Yue
    Hu, Xianluo
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (02) : 635 - 641
  • [47] Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
    Luo, Xiaoli
    Liu, Zhen
    Ma, Yaping
    Nan, Yanxia
    Gu, Yu
    Li, Shunli
    Zhou, Qiulan
    Mo, Junming
    Zhou, Qiulan (qlzhou@hnu.edu.cn); Mo, Junming (jmo1@e.ntu.edu.sg), 1600, Elsevier Ltd (888):
  • [48] Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
    Qiu, Liuzhe
    Han, Xiaopeng
    Lu, Qi
    Zhao, Jun
    Wang, Yang
    Chen, Zelin
    Zhong, Cheng
    Hu, Wenbin
    Deng, Yida
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (12): : 3554 - 3561
  • [49] Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
    Luo, Xiaoli
    Liu, Zhen
    Ma, Yaping
    Nan, Yanxia
    Gu, Yu
    Li, Shunli
    Zhou, Qiulan
    Mo, Junming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [50] Integrating Bimetal Alloy into N-Doped Carbon Nanotubes@Nanowires Superstructure for Zn-Air Batteries
    Xu, Chen
    Niu, Yanli
    Gong, Shuaiqi
    Liu, Xuan
    Xu, Mingze
    Liu, Tao
    Chen, Zuofeng
    CHEMSUSCHEM, 2022, 15 (08)