Study on Li de-intercalation/intercalation mechanism for a high capacity layered Li1.20Ni0.17Co0.10Mn0.53O2 material

被引:12
|
作者
Kobayashi, Hironori [1 ,2 ]
Takenaka, Yuki [2 ]
Arachi, Yoshinori [2 ]
Nitani, Hiroaki [3 ]
Okumura, Toyoki [1 ]
Shikano, Masahiro [1 ]
Kageyama, Hiroyuki [1 ]
Tatsumi, Kuniaki [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Ubiquitous Energy Devices, Ikeda, Osaka 5638577, Japan
[2] Kansai Univ, Fac Chem Mat & Bioengn, Dept Chem & Mat Engn, Suita, Osaka 5648680, Japan
[3] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan
关键词
Layered oxides; Positive electrode material; Lithium manganese oxide; Synchrotron XAFS measurement; CATHODE MATERIAL; INTERCALATION MECHANISM; POSITIVE ELECTRODES; PHYSICAL-PROPERTIES; ION BATTERIES; SURFACE; XANES;
D O I
10.1016/j.ssi.2012.02.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li1.20-yNi0.17Co0.10Mn0.53O2 (y = 0.1-0.93) were prepared electrochemically and characterized using synchrotron XRD and XAFS measurements. Structural analysis using XRD data demonstrated that the lattice parameters of Li1.20Ni0.17Co0.10Mn0.53O2 are a = 0.285214(7) nm and c = 1.42173(3) nm and that the chemical composition can be expressed referring to the Wyckoff positions 3a and 3b as Li0.988Ni0.012](3a)[Li0.212Ni0.158Mn0.53Co0.10](3b)O-2.. The M (M = Ni, Co, and Mn) K and L-edge XAFS results suggested that the Li de-intercalation from Li1.20Ni0.17Co0.10Mn0.53O2 proceeded mainly by the oxidation of Ni and Co ions up to y = 0.4 and then by the removal from oxygen from the lattice up to y = 0.93. On the other hand, the O K-edge XANES results indicated no increase in Li2CO3 or Li2O on the surface of the positive electrode materials with Li de-intercalation. These results demonstrate that the XAFS method using a combination of soft and hard X-ray is effective way of clarifying the Li de-intercalation/intercalation of the positive electrode materials. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:580 / 584
页数:5
相关论文
共 50 条
  • [31] Conductive Surface Modification with Aluminum of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes
    Liu, Jun
    Reeja-Jayan, B.
    Manthiram, Arumugam
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (20): : 9528 - 9533
  • [32] Structural, chemical, and electrochemical characterization of layered Li[Li0.17Mn0.33Co0.5-yNiy]O2 cathodes
    Arunkumar, T. A.
    Alvarez, E.
    Manthiram, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (08) : A770 - A775
  • [33] Improved Electrochemical Performance of Li1.15Ni0.17Co0.11Mn0.57O2 by Li2O Cathode Additive
    Hou, Xuwang
    Yang, Yang
    Mao, Ya
    Song, Jinhua
    Yang, Jinze
    Li, Guorui
    Pan, Yanlin
    Wang, Yong
    Xie, Jingying
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : A3387 - A3390
  • [34] Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge
    Ito, Atsushi
    Shoda, Kaoru
    Sato, Yuichi
    Hatano, Masaharu
    Horie, Hideaki
    Ohsawa, Yasuhiko
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4785 - 4790
  • [35] Improved electrochemical and thermal performances of layered Li [Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification
    Zhang, Xiaoping
    Sun, Shuwei
    Wu, Qing
    Wan, Ning
    Pan, Du
    Bai, Ying
    JOURNAL OF POWER SOURCES, 2015, 282 : 378 - 384
  • [36] Polymer Template Assisted Synthesis of Porous Li1.2Mn0.53Ni0.13Co0.13O2 as a High Capacity and High Rate Capability Positive Electrode Material
    Penki, Tirupathi Rao
    Shanmughasundaram, D.
    Jeyaseelan, A. V.
    Subramani, A. K.
    Munichandraiah, N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) : A33 - A39
  • [37] AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries
    Li, G. R.
    Feng, X.
    Ding, Y.
    Ye, S. H.
    Gao, X. P.
    ELECTROCHIMICA ACTA, 2012, 78 : 308 - 315
  • [38] Layered Li1.3Mn0.58Ni0.12Co0.11O2+ Cathode Material for Lithium-Ion Batteries with High Reversible Capacity
    Deng, Ya-Ping
    Fu, Fang
    Wu, Zhen-Guo
    Zhang, Tao
    Yin, Zu-Wei
    Zhang, Shao-Jian
    Li, Jun-Tao
    Huang, Ling
    Sun, Shi-Gang
    CHEMELECTROCHEM, 2016, 3 (12): : 2027 - 2030
  • [39] High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries
    Wang, Ying
    Sharma, Neeraj
    Su, Dawei
    Bishop, David
    Ahn, Hyojun
    Wang, Guoxiu
    SOLID STATE IONICS, 2013, 233 : 12 - 19
  • [40] Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries
    Shanmughasundaram Duraisamy
    Tirupathi Rao Penki
    Brij Kishore
    Prabeer Barpanda
    Prasant Kumar Nayak
    Doron Aurbach
    Nookala Munichandraiah
    Journal of Solid State Electrochemistry, 2017, 21 : 437 - 445