TOWARDS UNCERTAINTY QUANTIFICATION FOR ELECTRODE BENDING PREDICTION IN STEREOTACTIC NEUROSURGERY

被引:0
|
作者
Granados, Alejandro [1 ]
Lucena, Oeslle [1 ]
Vakharia, Vejay [2 ,3 ]
Miserocchi, Anna [2 ,3 ]
McEvoy, Andrew W. [2 ,3 ]
Vos, Sjoerd B. [2 ,3 ]
Rodionov, Roman [2 ,3 ]
Duncan, John S. [2 ,3 ]
Sparks, Rachel [1 ]
Ourselin, Sebastien [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Natl Hosp Neurol & Neurosurg, London, England
[3] UCL Inst Neurol, Dept Clin & Exper Epilepsy, Queen Sq, London, England
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
英国工程与自然科学研究理事会;
关键词
stereotactic neurosurgery; epilepsy; trajectory prediction; neural network; uncertainty quantification;
D O I
10.1109/isbi45749.2020.9098730
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Implantation accuracy of electrodes during stereotactic neurosurgery is necessary to ensure safety and efficacy. However, electrodes deflect from planned trajectories. Although mechanical models and data-driven approaches have been proposed for trajectory prediction, they lack to report uncertainty of the predictions. We propose to use Monte Carlo (MC) dropout on neural networks to quantify uncertainty of predicted electrode local displacement. We compute image features of 23 stereoelectroencephalography cases (241 electrodes) and use them as inputs to a neural network to regress electrode local displacement. We use MC dropout with 200 stochastic passes to quantify uncertainty of predictions. To validate our approach, we define a baseline model without dropout and compare it to a stochastic model using 10-fold cross-validation. Given a starting planned trajectory, we predicted electrode bending using inferred local displacement at the tip via simulation. We found MC dropout performed better than a non-stochastic baseline model and provided confidence intervals along the predicted trajectory of electrodes. We believe this approach facilitates better decision making for electrode bending prediction in surgical planning.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [11] Frameless stereotactic neurosurgery: Two steps towards the holy grail of surgical navigation
    Eljamel, MS
    STEREOTACTIC AND FUNCTIONAL NEUROSURGERY, 1999, 72 (2-4) : 125 - 128
  • [12] An uncertainty quantification method for nanomaterial prediction models
    Vanli, O.A. (avanli@fsu.edu), 1600, Springer London (70): : 1 - 4
  • [13] Uncertainty quantification and adaptive prediction of underground contaminants
    Shinozuka, Masanobu
    Chaudhuri, Samit Ray
    APPLICATIONS OF STATISICS AND PROBABILITY IN CIVIL ENGINEERING, 2007, : 395 - 395
  • [14] An uncertainty quantification method for nanomaterial prediction models
    Vanli, O. Arda
    Chen, Li-Jen
    Tsai, Chao-his
    Zhang, Chuck
    Wang, Ben
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 70 (1-4): : 33 - 44
  • [15] Physics Constrained Motion Prediction with Uncertainty Quantification
    Tumu, Renukanandan
    Lindemann, Lars
    Truong Nghiem
    Mangharam, Rahul
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [16] An uncertainty quantification method for nanomaterial prediction models
    O. Arda Vanli
    Li-Jen Chen
    Chao-his Tsai
    Chuck Zhang
    Ben Wang
    The International Journal of Advanced Manufacturing Technology, 2014, 70 : 33 - 44
  • [17] Uncertainty Quantification for Meningococcus B Carriers Prediction
    Acedo, Luis
    Burgos, Clara
    Cortes, Juan-Carlos
    Villanueva, Rafael J.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT II, 2017, 10209 : 560 - 569
  • [18] Quantification of parameter and model uncertainty for shape memory alloy bending actuators
    Crews, John H.
    Smith, Ralph C.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (02) : 229 - 245
  • [19] Towards a Better Uncertainty Quantification in Automated Valuation Models
    Pollestad, Arne Johan
    Naess, Arild Brandrud
    Oust, Are
    JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS, 2024,
  • [20] Evidence-based uncertainty quantification for bending properties of bimetal composites
    Li, Zhou
    Cao, Lixiong
    Huo, Mingshuai
    Jiang, Zhengyi
    APPLIED MATHEMATICAL MODELLING, 2023, 121 : 59 - 74