TOWARDS UNCERTAINTY QUANTIFICATION FOR ELECTRODE BENDING PREDICTION IN STEREOTACTIC NEUROSURGERY

被引:0
|
作者
Granados, Alejandro [1 ]
Lucena, Oeslle [1 ]
Vakharia, Vejay [2 ,3 ]
Miserocchi, Anna [2 ,3 ]
McEvoy, Andrew W. [2 ,3 ]
Vos, Sjoerd B. [2 ,3 ]
Rodionov, Roman [2 ,3 ]
Duncan, John S. [2 ,3 ]
Sparks, Rachel [1 ]
Ourselin, Sebastien [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Natl Hosp Neurol & Neurosurg, London, England
[3] UCL Inst Neurol, Dept Clin & Exper Epilepsy, Queen Sq, London, England
基金
英国工程与自然科学研究理事会;
关键词
stereotactic neurosurgery; epilepsy; trajectory prediction; neural network; uncertainty quantification;
D O I
10.1109/isbi45749.2020.9098730
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Implantation accuracy of electrodes during stereotactic neurosurgery is necessary to ensure safety and efficacy. However, electrodes deflect from planned trajectories. Although mechanical models and data-driven approaches have been proposed for trajectory prediction, they lack to report uncertainty of the predictions. We propose to use Monte Carlo (MC) dropout on neural networks to quantify uncertainty of predicted electrode local displacement. We compute image features of 23 stereoelectroencephalography cases (241 electrodes) and use them as inputs to a neural network to regress electrode local displacement. We use MC dropout with 200 stochastic passes to quantify uncertainty of predictions. To validate our approach, we define a baseline model without dropout and compare it to a stochastic model using 10-fold cross-validation. Given a starting planned trajectory, we predicted electrode bending using inferred local displacement at the tip via simulation. We found MC dropout performed better than a non-stochastic baseline model and provided confidence intervals along the predicted trajectory of electrodes. We believe this approach facilitates better decision making for electrode bending prediction in surgical planning.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [1] Patient-specific prediction of SEEG electrode bending for stereotactic neurosurgical planning
    Granados, Alejandro
    Han, Yuxuan
    Lucena, Oeslle
    Vakharia, Vejay
    Rodionov, Roman
    Vos, Sjoerd B.
    Miserocchi, Anna
    McEvoy, Andrew W.
    Duncan, John S.
    Sparks, Rachel
    Ourselin, Sebastien
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (05) : 789 - 798
  • [2] Patient-specific prediction of SEEG electrode bending for stereotactic neurosurgical planning
    Alejandro Granados
    Yuxuan Han
    Oeslle Lucena
    Vejay Vakharia
    Roman Rodionov
    Sjoerd B. Vos
    Anna Miserocchi
    Andrew W. McEvoy
    John S. Duncan
    Rachel Sparks
    Sébastien Ourselin
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 789 - 798
  • [3] A Machine Learning Approach to Predict Instrument Bending in Stereotactic Neurosurgery
    Granados, Alejandro
    Mancini, Matteo
    Vos, Sjoerd B.
    Lucena, Oeslle
    Vakharia, Vejay
    Rodionov, Roman
    Miserocchi, Anna
    McEvoy, Andrew W.
    Duncan, John S.
    Sparks, Rachel
    Ourselin, Sebastien
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 238 - 246
  • [4] Prediction and the quantification of uncertainty
    Dept. of Appl. Math. and Statistics, University at Stony Brook, Stony Brook, NY 11794-3600, United States
    不详
    Phys D Nonlinear Phenom, 1-4 (152-170):
  • [5] Prediction and the quantification of uncertainty
    Glimm, J
    Sharp, DH
    PHYSICA D, 1999, 133 (1-4): : 152 - 170
  • [6] Towards drilling rate of penetration prediction: Bayesian neural networks for uncertainty quantification
    Bizhani, Majid
    Kuru, Ergun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 219
  • [7] Towards optimal control of concentric tube robots in stereotactic neurosurgery
    Flasskamp, K.
    Worthmann, K.
    Muhlenhoff, J.
    Greiner-Petter, C.
    Buskens, C.
    Oertel, J.
    Keiner, D.
    Sattel, T.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2019, 25 (06) : 560 - 574
  • [8] Uncertainty Quantification in Computational and Prediction Science
    Ghanem, Roger G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (6-7) : 671 - 672
  • [9] The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery
    Paolo Mazzone
    Stefano Sposato
    Angelo Insola
    Eugenio Scarnati
    Journal of Neural Transmission , 2011, 118 : 1431 - 1451
  • [10] The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery
    Mazzone, Paolo
    Sposato, Stefano
    Insola, Angelo
    Scarnati, Eugenio
    JOURNAL OF NEURAL TRANSMISSION, 2011, 118 (10) : 1431 - 1451