Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer

被引:217
|
作者
Labib, M. Nuim [1 ]
Nine, Md. J. [1 ]
Afrianto, Handry [1 ]
Chung, Hanshik [2 ]
Jeong, Hyomin [2 ]
机构
[1] Gyeongsang Natl Univ, Dept Energy & Mech Engn, Tongyeong 650160, Gyeongnam, South Korea
[2] Gyeongsang Natl Univ, Inst Marine Ind, Dept Energy & Mech Engn, Tongyeong 650160, Gyeongnam, South Korea
基金
新加坡国家研究基金会;
关键词
CFD; Two-phase model; Hybrid/combined nanofluids; Non-Newtonian fluid; CNTs; TRANSFER ENHANCEMENT; FLOW;
D O I
10.1016/j.ijthermalsci.2013.04.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
Two-phase mixture model has been chosen to study forced convective heat transfer of nanofluid introducing a new concept of heat transfer enhancement in this article. Two different base fluids are individually employed to investigate the effect of base fluids on convective heat transfer mixing Al2O3 nanoparticles. The computational method has been successfully validated in case of Al2O3/water Nanofluids using available experimental data reported in the literature. The results show that Ethylene Glycol base fluid gives better heat transfer enhancement than that of water. Mixture of Al2O3 nanoparticles into CNTs/water Nanofluids is considered as a new concept of combined/hybrid nanofluids that can successfully enhance convective heat transfer. The computational model for CNTs/water nanofluid has been validated comparing the results with experimental data reported in literature. Then the validated method was used to simulate new concept of combined nanofluids. Combination of CNTs and Al2O3 nanoparticles into water base fluid tends to enhance the convective heat transfer performance significantly. It happens because CNTs nanofluid shows higher shear thinning behavior which causes the boundary layer thinner; in these regions the significant convective heat transfer enhancement takes place. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [41] Numerical Investigation of Mass and Heat Transfer in Ternary Hybrid Nanofluid Flow With Activation Energy
    Haq, Fazal
    Ghazwani, Hassan Ali
    Younis, Jihad
    Ghazwani, Mofareh Hassan
    Alnujaie, Ali
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2025, 2025 (01)
  • [42] Augmentation of heat transfer in a microtube and a wavy microchannel using hybrid nanofluid: A numerical investigation
    Singh, Shikhar Kumar
    Bhattacharyya, Suvanjan
    Paul, Akshoy Ranjan
    Sharifpur, Mohsen
    Meyer, Josua P.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [43] A numerical study of water based Al2O3 and Al2O3-Cu hybrid nanofluid effect on forced convective heat transfer
    Moghadassi, Abdolreza
    Ghomi, Ehsan
    Parvizian, Fahime
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 92 : 50 - 57
  • [44] Numerical investigation of combined convective heat transfer using fractal barriers in a circular cavity filled with nanofluid
    Mougouei, Reza
    Ali, Ali B. M.
    Akbari, Omid Ali
    Ahmadi, Gholamreza
    Salahshour, Soheil
    Baghaei, Sh
    CASE STUDIES IN THERMAL ENGINEERING, 2025, 65
  • [45] Numerical investigation on turbulent convective heat transfer of nanofluid flow in a square cross-sectioned duct
    Senay, Guelbanu
    Kaya, Metin
    Gedik, Engin
    Kayfeci, Muhammet
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (04) : 1432 - 1447
  • [46] Numerical investigation on turbulent convective heat transfer of nanofluid flow in a square cross-sectioned duct
    Senay, G.
    Kaya, M.
    Gedik, E.
    Kayfeci, M.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2024, 34 (06) : 2560 - 2560
  • [47] EFFECT OF CORRUGATED PIPE ON LAMINAR CONVECTIVE HEAT TRANSFER BY USING SWCNT NANOFLUID: A NUMERICAL STUDY
    Rabby, M. I. I.
    Hossain, F.
    Chowdhury, M. I. S.
    Mumu, T. A.
    LATIN AMERICAN APPLIED RESEARCH, 2022, 52 (02) : 127 - 134
  • [48] Convective heat transfer enhancement with graphene nanoplatelet/platinum hybrid nanofluid
    Yarmand, Hooman
    Zulkifli, Nurin Wahidah Binti Mohd
    Gharehkhani, Samira
    Shirazi, Seyed Farid Seyed
    Alrashed, Abdullah A. A. A.
    Bin Ali, Mohamad Azlin
    Dahari, Mahidzal
    Kazi, S. N.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2017, 88 : 120 - 125
  • [49] Impact of forced convective radiative heat and mass transfer mechanisms on 3D Carreau nanofluid: A numerical study
    Khan, M.
    Irfan, M.
    Khan, W. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (12):
  • [50] Impact of forced convective radiative heat and mass transfer mechanisms on 3D Carreau nanofluid: A numerical study
    M. Khan
    M. Irfan
    W. A. Khan
    The European Physical Journal Plus, 132