Quasisymmetric graphs and Zygmund functions

被引:0
|
作者
Kovalev, Leonid V. [1 ]
Onninen, Jani [1 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
来源
基金
美国国家科学基金会;
关键词
DIMENSION; EXTENSION; EMBEDDINGS;
D O I
10.1007/s11854-012-0039-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quasisymmetric graph is a curve whose projection onto a line is a quasisymmetric map. We show that this class of curves is related to solutions of the reduced Beltrami equation and to a generalization of the Zygmund class Lambda(*). This relation makes it possible to use the tools of harmonic analysis to construct nontrivial examples of quasisymmetric graphs and of quasiconformal maps.
引用
收藏
页码:343 / 361
页数:19
相关论文
共 50 条
  • [31] Colored Posets and Colored Quasisymmetric Functions
    Samuel K. Hsiao
    T. Kyle Petersen
    Annals of Combinatorics, 2010, 14 : 251 - 289
  • [32] Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II
    Michiel Hazewinkel
    Acta Applicandae Mathematica, 2005, 85 : 319 - 340
  • [33] The probability of positivity in symmetric and quasisymmetric functions
    Patrias, Rebecca
    Van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2020, 11 (03) : 475 - 493
  • [34] Revisiting Pattern Avoidance and Quasisymmetric Functions
    Bloom, Jonathan S.
    Sagan, Bruce E.
    ANNALS OF COMBINATORICS, 2020, 24 (02) : 337 - 361
  • [35] Peak quasisymmetric functions and Eulerian enumeration
    Billera, LJ
    Hsiao, SK
    van Willigenburg, S
    ADVANCES IN MATHEMATICS, 2003, 176 (02) : 248 - 276
  • [36] A note on three types of quasisymmetric functions
    Petersen, TK
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [37] Generalized Riffle Shuffles and Quasisymmetric Functions
    Richard P. Stanley
    Annals of Combinatorics, 2001, 5 (3) : 479 - 491
  • [38] Rigidity for the Hopf algebra of quasisymmetric functions
    Jia, Wanwan
    Wang, Zhengpan
    Yu, Houyi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [39] Macdonald polynomials and chromatic quasisymmetric functions
    Haglund, James
    Wilson, Andrew Timothy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 21
  • [40] Revisiting Pattern Avoidance and Quasisymmetric Functions
    Jonathan S. Bloom
    Bruce E. Sagan
    Annals of Combinatorics, 2020, 24 : 337 - 361