Real-Time Parameter Estimation of an Electrochemical Lithium-Ion Battery Model Using a Long Short-Term Memory Network

被引:51
|
作者
Chun, Huiyong [1 ]
Kim, Jungsoo [1 ]
Yu, Jungwook [1 ]
Han, Soohee [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Creat IT Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Electrochemical battery model; lithium-ion battery; long short-term memory; real-time parameter estimation; recurrent neural network; synthetic data generation; IDENTIFICATION; CHARGE; STATE; OPTIMIZATION; MANAGEMENT; DISCHARGE;
D O I
10.1109/ACCESS.2020.2991124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An electrochemical lithium-ion battery model is well known to be suited for effectively describing the microstructure evolution in charging and discharging processes of a lithium-ion battery with practically realizable complexity. This paper presents a neural network-based parameter estimation scheme to identify the parameters of an electrochemical lithium-ion battery model in a near-optimal and real-time manner in order to consistently observe the electrochemical states of batteries. The network is first trained to learn the dynamics of the electrochemical lithium-ion battery model, and then, it is applied to estimate the parameters with available finite-time measurements of voltage, current, temperature, and state of charge. In order to efficiently learn the dynamic characteristics of a lithium-ion battery, a well-known recurrent neural network, called a long short-term memory model, is employed with other techniques such as batch normalization, dropout, and stochastic gradient descent with warm restarts for learning speed enhancement and regularization. Using synthetic and experimental data, we show that the proposed estimation scheme works well, finding parameters and recovering the voltage profiles within the root-mean-square error of 0.43 & x0025; and 26 mV, respectively, even with measurements obtained within a sufficiently short interval of time.
引用
收藏
页码:81789 / 81799
页数:11
相关论文
共 50 条
  • [21] State of Charge Estimation of Lithium-Ion Batteries Using Long Short-Term Memory and Bi-directional Long Short-Term Memory Neural Networks
    Namboothiri K.M.
    Sundareswaran K.
    Nayak P.S.R.
    Simon S.P.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (01) : 175 - 182
  • [22] Stage of Charge Estimation of Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter With Long Short-Term Memory Model
    Shu, Xing
    Li, Guang
    Zhang, Yuanjian
    Shen, Shiquan
    Chen, Zheng
    Liu, Yonggang
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (03) : 1271 - 1284
  • [23] Short-Term Prediction of Remaining Life for Lithium-Ion Battery Based on Adaptive Hybrid Model With Long Short-Term Memory Neural Network and Optimized Particle Filter
    He, Ning
    Qian, Cheng
    He, Lile
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (03)
  • [24] Temperature Dependent State of Charge Estimation of Lithium-ion Batteries Using Long Short-Term Memory Network and Kalman Filter
    Yang, Yuhang
    Dong, Alice
    Li, Yihui
    Ahmed, Ryan
    Emadi, Ali
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 4335 - 4340
  • [25] Predictive model for real-time energy disaggregation using long short-term memory
    Li, Bingbing
    Wu, Tongzi
    Bian, Shijie
    Sutherland, John W.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (01) : 25 - 28
  • [26] Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction
    Wang, Yixiu
    Zhu, Jiangong
    Cao, Liang
    Gopaluni, Bhushan
    Cao, Yankai
    APPLIED ENERGY, 2023, 350
  • [27] State of health estimation for lithium-ion battery based on Bi-directional long short-term memory neural network and attention mechanism
    Guo, Yu
    Yang, Dongfang
    Zhao, Kun
    Wang, Kai
    ENERGY REPORTS, 2022, 8 : 208 - 215
  • [28] Estimation of State-of-health for Lithium-ion Battery Based on Increment Capacity Analysis Method and Long Short-term Memory Neural Network
    Li, Shaohua
    Fu, Zhixin
    Zhu, Junpeng
    Yuan, Yue
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 1818 - 1823
  • [29] Real-time Electric Vehicle Range Estimation Based on a Lithium-Ion Battery Model
    Barcellona, S.
    De Simone, D.
    Grillo, S.
    7TH INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP 2019): RENEWABLE ENERGY RESOURCES IMPACT, 2019, : 351 - 357
  • [30] State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory
    Li, Chaoran
    Zhu, Sichen
    Zhang, Liuli
    Liu, Xinjian
    Li, Menghan
    Zhou, Haiqin
    Zhang, Qiang
    Rao, Zhonghao
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2025, 4 (01):