Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems

被引:44
|
作者
Li, Chaoqian [1 ]
Li, Yaotang [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
关键词
Error bounds; Linear complementarity problem; Weakly chained diagonally dominant; B-matrices; P-matrices; P-MATRIX;
D O I
10.1007/s11075-016-0125-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The class of weakly chained diagonally dominant B-matrices, a subclass of P-matrices is introduced. Error bounds for the linear complementarity problem are presented when the involved matrix is a weakly chained diagonally dominant B-matrix. Numerical examples are given to show the sharpness of the proposed bounds.
引用
收藏
页码:985 / 998
页数:14
相关论文
共 50 条
  • [31] Note on error bounds for linear complementarity problems of Nekrasov matrices
    Li, Chaoqian
    Yang, Shaorong
    Huang, Hui
    Li, Yaotang
    Wei, Yimin
    NUMERICAL ALGORITHMS, 2020, 83 (01) : 355 - 372
  • [32] Error bounds for linear complementarity problems for SB-matrices
    Ping-Fan Dai
    Yao-Tang Li
    Chang-Jing Lu
    Numerical Algorithms, 2012, 61 : 121 - 139
  • [33] Error bounds for linear complementarity problems of MB-matrices
    Chen, Tingting
    Li, Wen
    Wu, Xianping
    Vong, Seakweng
    NUMERICAL ALGORITHMS, 2015, 70 (02) : 341 - 356
  • [34] Error bounds for linear complementarity problems of DB-matrices
    Dai, Ping-Fan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 830 - 840
  • [35] Error bounds for linear complementarity problems of QN-matrices
    Ping-Fan Dai
    Ji-Cheng Li
    Yao-Tang Li
    Cheng-yi Zhang
    Calcolo, 2016, 53 : 647 - 657
  • [36] Note on error bounds for linear complementarity problems of Nekrasov matrices
    Chaoqian Li
    Shaorong Yang
    Hui Huang
    Yaotang Li
    Yimin Wei
    Numerical Algorithms, 2020, 83 : 355 - 372
  • [37] Upper norm bounds for the inverse of locally doubly strictly diagonally dominant matrices with its applications in linear complementarity problems
    Liu, Jianzhou
    Zhou, Qi
    Xiong, Yebo
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1465 - 1491
  • [38] Upper norm bounds for the inverse of locally doubly strictly diagonally dominant matrices with its applications in linear complementarity problems
    Jianzhou Liu
    Qi Zhou
    Yebo Xiong
    Numerical Algorithms, 2022, 90 : 1465 - 1491
  • [39] Estimation of ∥A-1∥∞ for weakly chained diagonally dominant M-matrices
    Huang, Ting-Zhu
    Zhu, Yan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 670 - 677
  • [40] The refined error bounds for linear complementarity problems of H+-matrices
    Wu, Xianping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400