Stability Conditions of Monomial Bases and Comprehensive Grobner Systems

被引:0
|
作者
Nabeshima, Katsusuke [1 ]
机构
[1] Univ Tokushima, Inst Socioarts & Sci, Tokushima 7708502, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new stability condition of monomial bases is introduced. This stability condition is stronger than Kapur-Sun-Wang's one. Moreover, a new algorithm for computing comprehensive Grobner systems, is also introduced by using the new stability condition. A number of segments generated by the new algorithm is smaller than that of segments of in Kapur-Sun-Wang's algorithm.
引用
收藏
页码:248 / 259
页数:12
相关论文
共 50 条
  • [41] A new iterative algorithm for comprehensive Grobner systems
    Bigatti, Anna Maria
    Palezzato, Elisa
    Torielli, Michele
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2025,
  • [42] Counting and Grobner bases
    Kalorkoti, K
    JOURNAL OF SYMBOLIC COMPUTATION, 2001, 31 (03) : 307 - 313
  • [43] Equivariant Grobner bases
    Hillar, Christopher J.
    Krone, Robert
    Leykin, Anton
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 129 - 154
  • [44] Boolean Grobner bases
    Sato, Yosuke
    Inoue, Shutaro
    Suzuki, Akira
    Nabeshima, Katsusuke
    Sakai, Ko
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 622 - 632
  • [45] NOTES ON GROBNER BASES
    MISHRA, B
    YAP, C
    INFORMATION SCIENCES, 1989, 48 (03) : 219 - 252
  • [46] GROBNER BASES - AN INTRODUCTION
    BUCHBERGER, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 623 : 378 - 379
  • [47] Regular Grobner bases
    Månsson, J
    Nordbeck, P
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (02) : 163 - 181
  • [48] Replications with Grobner bases
    Cohen, AM
    Di Bucchianico, A
    Riccomagno, E
    MODA6 ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2001, : 37 - 44
  • [49] A Grobner basis for certain affine monomial curves
    Sengupta, I
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (03) : 1113 - 1129
  • [50] An introduction to Janet bases and Grobner bases
    Castro-Jiménez, FJ
    Moreno-Frías, MA
    RING THEORY AND ALGEBRAIC GEOMETRY, 2001, 221 : 133 - 145