Nested Monte-Carlo Expression Discovery

被引:14
|
作者
Cazenave, Tristan [1 ]
机构
[1] Univ Paris 09, LAMSADE, Paris, France
来源
ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2010年 / 215卷
关键词
D O I
10.3233/978-1-60750-606-5-1057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nested Monte-Carlo search is a general algorithm that gives good results in single player games. Genetic Programming evaluates and combines trees to discover expressions that maximize a given evaluation function. In this paper Nested Monte-Carlo Search is used to generate expressions that are evaluated in the same way as in Genetic Programming. Single player Nested Monte-Carlo Search is transformed in order to search expression trees rather than lists of moves. The resulting program achieves state of the art results on multiple benchmark problems. The proposed approach is simple to program, does not suffer from expression growth, has a natural restart strategy to avoid local optima and is extremely easy to parallelize.
引用
收藏
页码:1057 / +
页数:2
相关论文
共 50 条
  • [1] MONTE-CARLO EXPRESSION DISCOVERY
    Cazenave, Tristan
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (01)
  • [2] Nested Monte-Carlo Search
    Cazenave, Tristan
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 456 - 461
  • [3] Parallel Nested Monte-Carlo Search
    Cazenave, Tristan
    Jouandeau, Nicolas
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 2270 - +
  • [4] Forecasting Financial Volatility Using Nested Monte Carlo Expression Discovery
    Cazenave, Tristan
    Ben Hamida, Sana
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 726 - 733
  • [5] Nested Monte-Carlo Search with AMAF Heuristic
    Akiyama, Haruhiko
    Komiya, Kanako
    Kotani, Yoshiyuki
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 172 - 176
  • [6] Nested Monte-Carlo Search with simulation reduction
    Akiyama, Haruhiko
    Komiya, Kanako
    Kotani, Yoshiyuki
    KNOWLEDGE-BASED SYSTEMS, 2012, 34 : 12 - 20
  • [7] BOOTSTRAP RECYCLING - A MONTE-CARLO ALTERNATIVE TO THE NESTED BOOTSTRAP
    NEWTON, MA
    GEYER, CJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (427) : 905 - 912
  • [8] NESTED MONTE-CARLO STUDY OF RANDOM PACKING ON THE SPHERE
    RODGERS, RPC
    BADDELEY, AJ
    JOURNAL OF APPLIED PROBABILITY, 1991, 28 (03) : 539 - 552
  • [9] Algorithm Discovery with Monte-Carlo Search: Controlling the Size
    Moudrik, Josef
    Kren, Tomas
    Neruda, Roman
    2017 IEEE 29TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2017), 2017, : 390 - 395
  • [10] MONTE-CARLO
    TEMPLETONCOTILL, J
    CONNOISSEUR, 1977, 194 (781): : 215 - 216