A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms

被引:4
|
作者
de Gosson, Maurice [1 ]
机构
[1] Univ Vienna, NuHAG, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Hamiltonian Function; Canonical Transformation; Wigner Distribution; Weyl Operator; Linear Canonical Transformation;
D O I
10.1007/s11868-011-0023-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an exact symplectic covariance formula under nonlinear Hamiltonian phase flows (f(t)(H)) for the Wigner distribution W psi. A key role is played in our derivation by the linearized flow at the point where the Wigner distribution is calculated. We show that in general there does not exist any function psi(t) such that W psi[f(t)(H) (Z)] = W psi(t).
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [31] The robust Wigner distribution
    Stankovic, L
    Djurovic, I
    Stankovic, S
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 77 - 80
  • [32] The affine Wigner distribution
    Berge, Eirik
    Berge, Stine Marie
    Luef, Franz
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 : 150 - 175
  • [33] The affine Wigner distribution
    Berge, Eirik
    Berge, Stine Marie
    Luef, Franz
    Applied and Computational Harmonic Analysis, 2022, 56 : 150 - 175
  • [34] THE WIGNER PROPERTY OF SMOOTH NORMED SPACES
    Huang, Xujian
    Liu, Jiabin
    Wang, Shuming
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 110 (03) : 545 - 553
  • [35] THE WIGNER DISTRIBUTION FUNCTION
    IAFRATE, GJ
    GRUBIN, HL
    FERRY, DK
    PHYSICS LETTERS A, 1982, 87 (04) : 145 - 148
  • [36] Hamiltonian theory of the composite-fermion Wigner crystal
    Narevich, R
    Murthy, G
    Fertig, HA
    PHYSICAL REVIEW B, 2001, 64 (24):
  • [37] Adaption of fractional squeezing transformation to optical Wigner transformation
    Lv, Cui-hong
    Cai, Ya-xin
    Wang, Ya-wei
    OPTIK, 2016, 127 (08): : 4057 - 4060
  • [38] Relationships between two definitions of the discrete Wigner distribution and the continuous Wigner distribution
    Korkmaz, Sayit
    Ozaktas, Haldun M.
    DIGITAL SIGNAL PROCESSING, 2025, 158
  • [39] WIGNER DISTRIBUTION AND REDUCED DISTRIBUTION FUNCTIONS
    SHALITIN, D
    JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (11): : 5120 - 5124
  • [40] A Multitime Definition of the Wigner Higher Order Distribution: L-Wigner Distribution
    Stankovic, LJubisa
    IEEE SIGNAL PROCESSING LETTERS, 1994, 1 (07) : 106 - 109