WHICH ELEMENTS OF A FINITE GROUP ARE NON-VANISHING?

被引:0
|
作者
Arezoomand, M. [1 ]
Taeri, B. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
来源
关键词
Non-vanishing element; character; conjugacy class; Bi-Cayley graph; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. An element g is an element of G is called non vanishing, if for every irreducible complex character chi of G, chi(g) not equal 0. The bi-Cayley graph BCay(G, T) of G with respect to a subset T subset of G, is an undirected graph with vertex set G x {1, 2} and edge set {{(x, 1), (tx, 2)} x is an element of G, t is an element of T}. Let nv(G) be the set of all non -vanishing elements of a finite group G. We show that g is an element of nv(G) if and only if the adjacency matrix of BCay(G, T), where T = Cl(g) is the conjugacy class of g, is non-singular. We prove that if the commutator subgroup of G has prime order p, then (1) g is an element of nv(G) if and only if vertical bar Cl(g)vertical bar < p, (2) if p is the smallest prime divisor of vertical bar G vertical bar, then nv(G) = Z(G). Also we show that (a) if Cl(g) = {g, h}, then g is an element of nv(G) if and only if gh(-1) has odd order, (b) if vertical bar Cl(g)vertical bar is an element of {2, 3} and (o(g), 6) = 1, then g is an element of nv(G).
引用
收藏
页码:1097 / 1106
页数:10
相关论文
共 50 条
  • [21] On the non-vanishing of certain functions
    Levinson, N
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1936, 22 : 228 - 229
  • [22] On a non-vanishing ext.
    Fuchs, L
    Shelah, S
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2003, 109 : 235 - 239
  • [23] Remarks on the non-vanishing conjecture
    Gongyo, Yoshinori
    ALGEBRAIC GEOMETRY IN EAST ASIA - TAIPEI 2011, 2015, 65 : 107 - 116
  • [24] Simultaneous non-vanishing of twists
    Akbary, Amir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) : 3143 - 3151
  • [25] ON THE NON-VANISHING OF POINCARE SERIES
    LEHNER, J
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1980, 23 (JUN) : 225 - 228
  • [26] Non-vanishing of class group L-functions at the central point
    Blomer, V
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (04) : 831 - +
  • [27] On the commutant of asymptotically non-vanishing contractions
    György Pál Gehér
    László Kérchy
    Periodica Mathematica Hungarica, 2011, 63 : 191 - 203
  • [28] A NON-VANISHING RESULT ON THE SINGULARITY CATEGORY
    Chen, Xiao-Wu
    Li, Zhi-Wei
    Zhang, Xiaojin
    Zhao, Zhibing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3765 - 3776
  • [29] ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY
    Grobner, Harald
    Matringe, Nadir
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 93 - 106
  • [30] Non-vanishing of Hilbert Poincare series
    Kumari, Moni
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1476 - 1485