Request-Aware Task Offloading in Mobile Edge Computing via Deep Reinforcement Learning

被引:0
|
作者
Sheng, Ziwen [1 ]
Mao, Yingchi [1 ]
Wang, Jiajun [1 ]
Nie, Hua [2 ]
Huang, Jianxin [2 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[2] Suma Technol Co Ltd, Res & Dev Dept, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Task offloading; Resource allocation; Deep reinforcement learning; Dependent tasks; RESOURCE-ALLOCATION;
D O I
10.1109/CBD58033.2022.00059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The popularization of smart mobile devices has brought about the emergence of a new generation of mobile applications, such as face recognition and virtual reality. The existing mobile edge computing technology can offload tasks to the edge server for computation through the wireless channel, thereby satisfying the low delay requirement of the applications. However, due to the limited computing resources, a single-edge server cannot satisfy the offloading requirements of all users. Request Aware Task Offloading (RATO) scheme was proposed aiming at the problem that the limited edge server computing resources made it impossible to meet the requirements of task completion delay and device energy consumption with the optimization objective to minimize the weighted total overhead (including the mobile device's delay performance metric and energy consumption performance metric). Specifically, we first formulated the task offloading and resource allocation problem as a Markov Decision Process (MDP). After that, a deep reinforcement learning algorithm based on Deep Q Network was developed to solve the optimal offloading scheme. The simulation results show that the weighted total overhead of the RATODQN is lower than that of the existing schemes by 41.59% on average, thereby effectively improving the user's QoE.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 50 条
  • [31] Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning
    Samy, Ahmed
    Elgendy, Ibrahim A.
    Yu, Haining
    Zhang, Weizhe
    Zhang, Hongli
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4872 - 4887
  • [32] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [33] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [34] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [35] Deep Reinforcement Learning based Reliability-aware Resource Placement and Task Offloading in Edge Computing
    Liang, Jingyu
    Feng, Zihan
    Gao, Han
    Chen, Ying
    Huang, Jiwei
    Truong, Hong-Linh
    2024 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, ICWS 2024, 2024, : 697 - 706
  • [36] Utility Aware Task Offloading for Mobile Edge Computing
    Bi, Ran
    Ren, Jiankang
    Wang, Hao
    Liu, Qian
    Yang, Xiuyuan
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2019, 2019, 11604 : 547 - 555
  • [37] Deep reinforcement learning for computation offloading in mobile edge computing environment
    Chen, Miaojiang
    Wang, Tian
    Zhang, Shaobo
    Liu, Anfeng
    COMPUTER COMMUNICATIONS, 2021, 175 (175) : 1 - 12
  • [38] Task offloading based on deep learning for blockchain in mobile edge computing
    Chung-Hua Chu
    Wireless Networks, 2021, 27 : 117 - 127
  • [39] Task offloading based on deep learning for blockchain in mobile edge computing
    Chu, Chung-Hua
    WIRELESS NETWORKS, 2021, 27 (01) : 117 - 127
  • [40] Divisible Task Offloading for Multiuser Multiserver Mobile Edge Computing Systems Based on Deep Reinforcement Learning
    Tang, Lin
    Qin, Hang
    IEEE ACCESS, 2023, 11 : 83507 - 83522