PARAMETER SPACE FOR THERMAL SPIN-TRANSFER TORQUE

被引:31
|
作者
Leutenantsmeyer, J. C. [1 ]
Walter, M. [1 ]
Zbarsky, V. [1 ]
Muezenberg, M. [1 ]
Gareev, R. [2 ]
Rott, K. [3 ]
Thomas, A. [3 ]
Reiss, G. [3 ]
Peretzki, P. [4 ]
Schuhmann, H. [4 ]
Seibt, M. [4 ]
Czerner, M. [5 ]
Heiliger, C. [5 ]
机构
[1] Georg August Univ Gottingen, Phys Inst 1, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
[2] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[3] Univ Bielefeld, Thin Films & Phys Nanostruct, D-33615 Bielefeld, Germany
[4] Georg August Univ Gottingen, Phys Inst 4, D-37077 Gottingen, Germany
[5] Univ Giessen, Phys Inst 1, D-35392 Giessen, Germany
关键词
Magnetic tunnel junctions; thermal spin-transfer torque; ultra thin MgO barrier;
D O I
10.1142/S2010324713500021
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermal spin-transfer torque describes the manipulation of the magnetization by the application of a heat flow. The effect has been calculated theoretically by Jia et al. in 2011. It is found to require large temperature gradients in the order of Kelvins across an ultra thin MgO barrier. In this paper, we present results on the fabrication and the characterization of magnetic tunnel junctions with three monolayer thin MgO barriers. The quality of the interfaces at different growth conditions is studied quantitatively via high-resolution transmission electron microscopy imaging. We demonstrate tunneling magnetoresistance ratios of up to 55% to 64% for 3 to 4 monolayer barrier thickness. Magnetic tunnel junctions with perpendicular magnetization anisotropy show spin-transfer torque switching with a critical current of 0.2 MA/cm(2). The thermally generated torque is calculated ab initio using the Korringa-Kohn-Rostoker and nonequilibrium Green's function method. Temperature gradients generated from femtosecond laser pulses were simulated using COMSOL, revealing gradients of 20K enabling thermal spin-transfer-torque switching.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque
    Abert, Claas
    Bruckner, Florian
    Vogler, Christoph
    Suess, Dieter
    AIP ADVANCES, 2018, 8 (05)
  • [32] Resonant Spin-Transfer Torque Magnetoresistive Memory
    Zhu, Jian-Gang
    Shadman, Abir
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (03)
  • [33] Nanomagnonic devices based on the spin-transfer torque
    Urazhdin S.
    Demidov V.E.
    Ulrichs H.
    Kendziorczyk T.
    Kuhn T.
    Leuthold J.
    Wilde G.
    Demokritov S.O.
    Nature Nanotechnology, 2014, 9 (7) : 509 - 513
  • [34] Spin-transfer torque for continuously variable magnetization
    Xiao, J
    Zangwill, A
    Stiles, MD
    PHYSICAL REVIEW B, 2006, 73 (05):
  • [35] Spin-transfer torque switching in magnetic multilayers
    Carpentieri, M.
    Consolo, G.
    Azzerboni, B.
    Torres, L.
    Cardelli, E.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1677 - 1680
  • [36] Nonadiabatic spin-transfer torque in real materials
    Garate, Ion
    Gilmore, K.
    Stiles, M. D.
    MacDonald, A. H.
    PHYSICAL REVIEW B, 2009, 79 (10)
  • [37] Nonequilibrium spin-transfer torque in SFNFS junctions
    Zhao, Erhai
    Sauls, J. A.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 893 - +
  • [38] Proposal for a direct measurement of the nonadiabatic spin-transfer torque parameter β and the spin-polarization rate P
    Yan, Ming
    Kakay, Attila
    Hertel, Riccardo
    PHYSICAL REVIEW B, 2014, 89 (05):
  • [39] Domain-wall dynamics driven by thermal and electrical spin-transfer torque
    Wang, Ya-Ru
    Yang, Chao
    Wang, Zheng-Chuan
    Su, Gang
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [40] Benchmarking of spin-orbit torque vs spin-transfer torque devices
    Kumar, Piyush
    Naeemi, Azad
    APPLIED PHYSICS LETTERS, 2022, 121 (11)