PARAMETER SPACE FOR THERMAL SPIN-TRANSFER TORQUE

被引:31
|
作者
Leutenantsmeyer, J. C. [1 ]
Walter, M. [1 ]
Zbarsky, V. [1 ]
Muezenberg, M. [1 ]
Gareev, R. [2 ]
Rott, K. [3 ]
Thomas, A. [3 ]
Reiss, G. [3 ]
Peretzki, P. [4 ]
Schuhmann, H. [4 ]
Seibt, M. [4 ]
Czerner, M. [5 ]
Heiliger, C. [5 ]
机构
[1] Georg August Univ Gottingen, Phys Inst 1, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
[2] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[3] Univ Bielefeld, Thin Films & Phys Nanostruct, D-33615 Bielefeld, Germany
[4] Georg August Univ Gottingen, Phys Inst 4, D-37077 Gottingen, Germany
[5] Univ Giessen, Phys Inst 1, D-35392 Giessen, Germany
关键词
Magnetic tunnel junctions; thermal spin-transfer torque; ultra thin MgO barrier;
D O I
10.1142/S2010324713500021
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermal spin-transfer torque describes the manipulation of the magnetization by the application of a heat flow. The effect has been calculated theoretically by Jia et al. in 2011. It is found to require large temperature gradients in the order of Kelvins across an ultra thin MgO barrier. In this paper, we present results on the fabrication and the characterization of magnetic tunnel junctions with three monolayer thin MgO barriers. The quality of the interfaces at different growth conditions is studied quantitatively via high-resolution transmission electron microscopy imaging. We demonstrate tunneling magnetoresistance ratios of up to 55% to 64% for 3 to 4 monolayer barrier thickness. Magnetic tunnel junctions with perpendicular magnetization anisotropy show spin-transfer torque switching with a critical current of 0.2 MA/cm(2). The thermally generated torque is calculated ab initio using the Korringa-Kohn-Rostoker and nonequilibrium Green's function method. Temperature gradients generated from femtosecond laser pulses were simulated using COMSOL, revealing gradients of 20K enabling thermal spin-transfer-torque switching.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Evidence for Thermal Spin-Transfer Torque
    Yu, Haiming
    Granville, S.
    Yu, D. P.
    Ansermet, J. -Ph.
    PHYSICAL REVIEW LETTERS, 2010, 104 (14)
  • [2] Amplification of Spin Waves by Thermal Spin-Transfer Torque
    Padron-Hernandez, E.
    Azevedo, A.
    Rezende, S. M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (19)
  • [3] Thermal spin-transfer torque in magnetoelectronic devices
    Hatami, Moosa
    Bauer, Gerrit E. W.
    Zhang, Qinfang
    Kelly, Paul J.
    PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [4] Spin-transfer torque and dynamics
    Stiles, Mark D.
    Miltat, Jacques
    SPIN DYNAMICS IN CONFINED MAGNETIC STRUCTURES III, 2006, 101 : 225 - 308
  • [5] Experimental determination of spin-transfer torque nonadiabaticity parameter and spin polarization in permalloy
    Lepadatu, S.
    Hickey, M. C.
    Potenza, A.
    Marchetto, H.
    Charlton, T. R.
    Langridge, S.
    Dhesi, S. S.
    Marrows, C. H.
    PHYSICAL REVIEW B, 2009, 79 (09):
  • [6] Anatomy of spin-transfer torque
    Stiles, MD
    Zangwill, A
    PHYSICAL REVIEW B, 2002, 66 (01) : 144071 - 1440714
  • [7] Thermally assisted spin-transfer torque dynamics in energy space
    Pinna, D.
    Kent, A. D.
    Stein, D. L.
    PHYSICAL REVIEW B, 2013, 88 (10)
  • [8] Thermal spin-transfer torque in magnetic tunnel junctions (invited)
    Heiliger, Christian
    Franz, C.
    Czerner, Michael
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [9] Initiation of spin-transfer torque by thermal transport from magnons
    Slonczewski, John C.
    PHYSICAL REVIEW B, 2010, 82 (05)
  • [10] Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory
    Diao, Zhitao
    Li, Zhanjie
    Wang, Shengyuang
    Ding, Yunfei
    Panchula, Alex
    Chen, Eugene
    Wang, Lien-Chang
    Huai, Yiming
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (16)