Two Questions of Erdos on Hypergraphs above the Turan Threshold

被引:0
|
作者
Markstrom, Klas [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
关键词
turan problem; hypergraphs;
D O I
10.1002/jgt.21752
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For ordinary graphs it is known that any graph G with more edges than the Turan number of Ks must contain several copies of Ks, and a copy of Ks+1-, the complete graph on s+1 vertices with one missing edge. Erdos asked if the same result is true for Ks3, the complete 3-uniform hypergraph on s vertices. In this note, we show that for small values of n, the number of vertices in G, the answer is negative for s=4. For the second property, that of containing a Ks+13-, we show that for s=4 the answer is negative for all large n as well, by proving that the Turan density of K53- is greater than that of K43.
引用
收藏
页码:101 / 105
页数:5
相关论文
共 50 条
  • [41] The Turan number of Berge hypergraphs with stable properties
    Shan, Erfang
    Kang, Liying
    Xue, Yisai
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [42] Non-jumping Turan densities of hypergraphs
    Yan, Zilong
    Peng, Yuejian
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [43] The Turan number of Berge-matching in hypergraphs
    Kang, Liying
    Ni, Zhenyu
    Shan, Erfang
    DISCRETE MATHEMATICS, 2022, 345 (08)
  • [44] Preface to Induced Turan problems and traces of hypergraphs
    Furedi, Zoltan
    Luo, Ruth
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 111
  • [45] ON RAMSEY-TURAN TYPE THEOREMS FOR HYPERGRAPHS
    ERDOS, P
    SOS, VT
    COMBINATORICA, 1982, 2 (03) : 289 - 295
  • [46] Turan problems on Non-uniform Hypergraphs
    Johnston, J. Travis
    Lu, Linyuan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [47] Hypergraphs with minimum positive uniform Turan density
    Garbe, Frederik
    Kral', Daniel
    Lamaison, Ander
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (02) : 701 - 726
  • [48] ROOTS OF TRIGONOMETRIC POLYNOMIALS AND THE ERDOS-TURaN THEOREM
    Steinerberger, Stefan
    MATHEMATIKA, 2020, 66 (02) : 245 - 254
  • [49] ERDOS-TURAN INEQUALITIES FOR DISTANCE FUNCTIONS ON SPHERES
    WAGNER, G
    MICHIGAN MATHEMATICAL JOURNAL, 1992, 39 (01) : 17 - 34
  • [50] Additive bases representations and the Erdos-Turan conjecture
    Grekos, G
    Haddad, L
    Helou, C
    Pihko, J
    NUMBER THEORY, 2004, : 193 - 200