Adaptive Semidiscrete Finite Element Methods for Semilinear Parabolic Integrodifferential Optimal Control Problem with Control Constraint

被引:0
|
作者
Lu, Zuliang [1 ,2 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Xiangtan Univ, Coll Civil Engn & Mech, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
APPROXIMATION; EQUATIONS;
D O I
10.1155/2013/302935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential optimal control problems. We derive a posteriori error estimates in L-2(J; L-2(Omega))-norm and L-2 (J; H-1 (Omega))-norm for both the control and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Finite Element Approximation of Space Fractional Optimal Control Problem with Integral State Constraint
    Zhou, Zhaojie
    Song, Jiabin
    Chen, Yanping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (04) : 1027 - 1049
  • [42] Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint
    Zhou, Zhaojie
    Liu, Jie
    Chen, Yanping
    Wang, Qiming
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1983 - 2004
  • [43] Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint
    Zhaojie Zhou
    Jie Liu
    Yanping Chen
    Qiming Wang
    Numerical Algorithms, 2023, 94 : 1983 - 2004
  • [44] Adaptive finite element method for an optimal control problem of Stokes flow with L2-norm state constraint
    Niu, Haifeng
    Yuan, Lei
    Yang, Danping
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (03) : 534 - 549
  • [45] UNSTRUCTURED SPACE-TIME FINITE ELEMENT METHODS FOR OPTIMAL CONTROL OF PARABOLIC EQUATIONS
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A744 - A771
  • [46] Simultaneous Space-Time Finite Element Methods for Parabolic Optimal Control Problems
    Langer, Ulrich
    Schafelner, Andreas
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 314 - 321
  • [47] Relaxed discretization methods for nonconvex semilinear parabolic optimal control problems
    Chryssoverghi, I
    ADVANCES IN SCATTERING AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2004, : 236 - 243
  • [48] Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems
    Gong, Wei
    Li, Buyang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2898 - 2939
  • [49] Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian
    Wang, Fangyuan
    Wang, Qiming
    Zhou, Zhaojie
    CALCOLO, 2024, 61 (04)
  • [50] Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint
    Haitao Leng
    Yanping Chen
    Advances in Computational Mathematics, 2018, 44 : 367 - 394