Adaptive Semidiscrete Finite Element Methods for Semilinear Parabolic Integrodifferential Optimal Control Problem with Control Constraint

被引:0
|
作者
Lu, Zuliang [1 ,2 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Xiangtan Univ, Coll Civil Engn & Mech, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
APPROXIMATION; EQUATIONS;
D O I
10.1155/2013/302935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential optimal control problems. We derive a posteriori error estimates in L-2(J; L-2(Omega))-norm and L-2 (J; H-1 (Omega))-norm for both the control and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results.
引用
收藏
页数:11
相关论文
共 50 条