GAUSSIAN HYPERGEOMETRIC SERIES AND SUPERCONGRUENCES

被引:49
|
作者
Osburn, Robert [1 ]
Schneider, Carsten [2 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
[2] Johannes Kepler Univ Linz, Res Inst Symbol Computat, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
NUMBER; SUMMATION; IDENTITIES; RHOMBUS;
D O I
10.1090/S0025-5718-08-02118-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be an odd prime. In 1984, Greene introduced the notion of hypergeometric functions over finite fields. Special values of these functions have been of interest as they are related to the number of F-p points on algebraic varieties and to Fourier coefficients of modular forms. In this paper, we explicitly determine these functions modulo higher powers of p and discuss an application to supercongruences. This application uses two non-trivial generalized Harmonic sum identities discovered using the computer summation package Sigma. We illustrate the usage of Sigma in the discovery and proof of these two identities.
引用
收藏
页码:275 / 292
页数:18
相关论文
共 50 条
  • [41] Symbolic summation methods and hypergeometric supercongruences
    Wang, Chen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [42] Hyperelliptic curves and values of Gaussian hypergeometric series
    Rupam Barman
    Gautam Kalita
    Neelam Saikia
    Archiv der Mathematik, 2014, 102 : 345 - 355
  • [43] Hyperelliptic curves and values of Gaussian hypergeometric series
    Barman, Rupam
    Kalita, Gautam
    Saikia, Neelam
    ARCHIV DER MATHEMATIK, 2014, 102 (04) : 345 - 355
  • [44] Reduction formulae for triple Gaussian hypergeometric series
    Exton, H
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (09): : 885 - 887
  • [45] Appell series over finite fields and Gaussian hypergeometric series
    Tripathi, Mohit
    Barman, Rupam
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (02)
  • [46] Appell series over finite fields and Gaussian hypergeometric series
    Mohit Tripathi
    Rupam Barman
    Research in the Mathematical Sciences, 2021, 8
  • [47] Some q-analogues of supercongruences for truncated 3F2 hypergeometric series
    Guo, Victor J. W.
    RAMANUJAN JOURNAL, 2022, 59 (01): : 131 - 142
  • [48] Certain product formulas and values of Gaussian hypergeometric series
    Mohit Tripathi
    Rupam Barman
    Research in Number Theory, 2020, 6
  • [49] A Gaussian hypergeometric series evaluation and Apery number congruences
    Ahlgren, S
    Ono, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 518 : 187 - 212
  • [50] Certain product formulas and values of Gaussian hypergeometric series
    Tripathi, Mohit
    Barman, Rupam
    RESEARCH IN NUMBER THEORY, 2020, 6 (03)