Parameter estimation by a Markov chain Monte Carlo technique for the Candy model

被引:1
|
作者
Descombes, X [1 ]
van Lieshout, MNM [1 ]
Stoica, R [1 ]
Zerubia, J [1 ]
机构
[1] INRIA, CNRS UNSA INRIA Joint Res Grp, F-06902 Sophia Antipolis, France
关键词
D O I
10.1109/SSP.2001.955212
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a parameter estimation method for the Candy model based on Monte Carlo approximation of the likelihood function. In order to produce such an approximation a Metropolis-Hastings style algorithm [3] for simulating the Candy model [10, 11] is introduced.
引用
收藏
页码:22 / 25
页数:4
相关论文
共 50 条
  • [21] CIGALEMC: GALAXY PARAMETER ESTIMATION USING A MARKOV CHAIN MONTE CARLO APPROACH WITH CIGALE
    Serra, Paolo
    Amblard, Alexandre
    Temi, Pasquale
    Burgarella, Denis
    Giovannoli, Elodie
    Buat, Veronique
    Noll, Stefan
    Im, Stephen
    ASTROPHYSICAL JOURNAL, 2011, 740 (01):
  • [22] Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo
    Liu, Ying
    Li, Chunguang
    INFORMATION SCIENCES, 2016, 326 : 334 - 349
  • [23] Parameter Estimation of an Electrohydraulic Servo System Using a Markov Chain Monte Carlo Method
    Liu, Junhong
    Wu, Huapeng
    Handroos, Heikki
    Haario, Heikki
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (01):
  • [24] Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
    Raphael Costa Carvalho
    Iasmin Louzada Herzog
    Helcio Rangel Barreto Orlande
    Marcelo José Colaço
    Italo Marcio Madeira
    Nirupam Chakraborti
    Computational and Applied Mathematics, 2023, 42
  • [25] Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
    Carvalho, Raphael Costa
    Herzog, Iasmin Louzada
    Barreto Orlande, Helcio Rangel
    Colaco, Marcelo Jose
    Madeira, Italo Marcio
    Chakraborti, Nirupam
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [26] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [27] Benchmark estimation for Markov chain Monte Carlo samples
    Guha, S
    MacEachern, SN
    Peruggia, M
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 683 - 701
  • [28] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [29] Markov chain Monte Carlo estimation of a mixture item response theory model
    Cho, Sun-Joo
    Cohen, Allan S.
    Kim, Seock-Ho
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (02) : 278 - 306
  • [30] Opinion mining for user experience evaluation model using Bayesian estimation of Markov Chain Monte Carlo technique
    Pandiyarajan, Rajkumar
    Shanmugavadivel, Kogilavani
    DYNA, 2022, 97 (02): : 189 - 194