HYPERPARAMETERS ESTIMATION FOR THE BAYESIAN LOCALIZATION OF THE EEG SOURCES WITH TV PRIORS

被引:0
|
作者
Lopez, Antonio [1 ]
Cortes, Jesus M. [2 ,4 ]
Lopez-Oller, Domingo [3 ]
Molina, Rafael [2 ]
Katsaggelos, Aggelos K. [5 ]
机构
[1] Univ Granada, Dept Lenguajes & Sistemas Informat, E-18071 Granada, Spain
[2] Univ Granada, Dept Ciencias Computac I.A, E-18071 Granada, Spain
[3] Univ Granada, Dept Teoria Senal, Telemat Comunicac, E-18071 Granada, Spain
[4] Ikerbasque, Biocruces Hlth Res Inst, Basque Fdn Sci, Baracaldo 48903, Spain
[5] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
关键词
EEG Source Localization; Bayesian Inference; TV Prior; Variational Methods; Hyperparameters Estimation; RECONSTRUCTION; BRAIN; MEG;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we propose a new Bayesian method for the non-invasive localization of EEG sources. For this problem, most of the existing methods assume that the sources are distributed throughout the brain volume according to smooth 3D patterns. However, this assumption might fail in pathological conditions, such as in an epileptic brain, where it can occur that the neurophysiological generators are localized in a narrow region, highly compacted, what originates abrupt profiles of electrical activity. This new method incorporates a Total Variation (TV) prior which has been used before in image processing for edge detection and applies variational methods to approximate the probability distributions to estimate the unknown parameters and the sources. The procedure is tested and validated on synthetic EEG data.
引用
收藏
页码:489 / 493
页数:5
相关论文
共 50 条
  • [41] Bayesian estimation of incomplete data using conditionally specified priors
    Maria Sarabia, Jose
    Shahtahmassebi, Golnaz
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3419 - 3435
  • [42] How to Choose Priors for Bayesian Estimation of the Discovery Process Model
    Jingzhen Xu
    Richard Sinding-Larsen
    Natural Resources Research, 2005, 14 (3) : 211 - 233
  • [43] Bayesian estimation of the generalized lognormal distribution using objective priors
    Li, Shengnan
    Wang, Min
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (07) : 1323 - 1341
  • [44] Priors and Bayesian parameter estimation of affine term structure models
    Soegner, Leopold
    INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2014, 4 (3-4) : 288 - 319
  • [45] A NON-BAYESIAN APPROACH TO ESTIMATION USING TESTED PRIORS
    GEORGE, VT
    KATTI, SK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (05) : 1629 - 1639
  • [46] Reconsidering Spatial Priors In EEG Source Estimation Does White Matter Contribute to EEG Rhythms?
    Douglas, Pamela K.
    Douglas, David B.
    2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 88 - 99
  • [47] Multiple Priors Integration for Reliability Estimation Using the Bayesian Melding Method
    Li, Zhaojun
    Guo, Jian
    Xiao, Ning-Cong
    Huang, Wei
    2017 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2017,
  • [48] Kullback Leibler property of kernel mixture priors in Bayesian density estimation
    Wu, Yuefeng
    Ghosal, Subhashis
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 298 - 331
  • [49] Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation
    Gill, Jeff
    Casella, George
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 453 - 464
  • [50] Bayesian sample size re-estimation using power priors
    Brakenhoff, T. B.
    Roes, K. C. B.
    Nikolakopoulos, S.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1664 - 1675