Gradient-Based Inverse Risk-Sensitive Reinforcement Learning

被引:0
|
作者
Mazumdar, Eric [1 ]
Ratliff, Lillian J. [2 ]
Fiez, Tanner [2 ]
Sastry, S. Shankar [1 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA 94720 USA
[2] Univ Washington, Elect Engn Dept, Seattle, WA 98195 USA
关键词
PROSPECT-THEORY; CHOICE; DECISIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of inverse reinforcement learning in Markov decision processes where the agent is risk-sensitive. In particular, we model risk-sensitivity in a reinforcement learning framework by making use of models of human decision-making having their origins in behavioral psychology and economics. We propose a gradient-based inverse reinforcement learning algorithm that minimizes a loss function defined on the observed behavior. We demonstrate the performance of the proposed technique on two examples, the first of which is the canonical Grid World example and the second of which is an MDP modeling passengers' decisions regarding ride-sharing. In the latter, we use pricing and travel time data from a ride-sharing company to construct the transition probabilities and rewards of the MDP.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] RMIX: Learning Risk-Sensitive Policies for Cooperative Reinforcement Learning Agents
    Qiu, Wei
    Wang, Xinrun
    Yu, Runsheng
    He, Xu
    Wang, Rundong
    An, Bo
    Obraztsova, Svetlana
    Rabinovich, Zinovi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [22] Risk-sensitive reinforcement learning algorithms with generalized average criterion
    殷苌茗
    王汉兴
    赵飞
    AppliedMathematicsandMechanics(EnglishEdition), 2007, (03) : 405 - 416
  • [23] State-Augmentation Transformations for Risk-Sensitive Reinforcement Learning
    Ma, Shuai
    Yu, Jia Yuan
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4512 - 4519
  • [24] Risk-sensitive reinforcement learning algorithms with generalized average criterion
    Chang-ming Yin
    Wang Han-xing
    Zhao Fei
    Applied Mathematics and Mechanics, 2007, 28 : 405 - 416
  • [25] Direct gradient-based reinforcement learning for robot behavior learning
    El-Fakdi, Andres
    Carreras, Marc
    Ridao, Pere
    INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS II, 2007, : 175 - +
  • [26] Risk-sensitive reinforcement learning algorithms with generalized average criterion
    Yin Chang-ming
    Wang Han-xing
    Zhao Fei
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (03) : 405 - 416
  • [27] Risk-Sensitive Reinforcement Learning with Function Approximation: A Debiasing Approach
    Fei, Yingjie
    Yang, Zhuoran
    Wang, Zhaoran
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [28] Risk-sensitive reinforcement learning applied to control under constraints
    Geibel, P
    Wysotzki, F
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2005, 24 : 81 - 108
  • [29] Risk-sensitive reinforcement learning applied to control under constraints
    Geibel, P. (PGEIBEL@UOS.DE), 1600, American Association for Artificial Intelligence (24):
  • [30] Risk-Sensitive Portfolio Management by using Distributional Reinforcement Learning
    Harnpadungkij, Thammasorn
    Chaisangmongkon, Warasinee
    Phunchongharn, Phond
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 110 - 115