Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction

被引:14
|
作者
Li, Zhihong [1 ]
Xu, Han [1 ]
Gao, Xiuli [1 ]
Wang, Zinan [1 ]
Xu, Wangtu [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Civil & Transportat Engn, Beijing 100044, Peoples R China
[2] Xiamen Univ, Dept Urban Planning, Xiamen, Peoples R China
关键词
ATT-BiLSTM; attention mechanism; deep learning; short-term traffic flow prediction; spatiotemporal features; MODEL; SVR;
D O I
10.1080/15472450.2022.2142049
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6-5.9%, 1.6-4.7% and 0.6-22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.
引用
收藏
页码:511 / 524
页数:14
相关论文
共 50 条
  • [41] LSTM training set analysis and clustering model development for short-term traffic flow prediction
    Erdem Doğan
    Neural Computing and Applications, 2021, 33 : 11175 - 11188
  • [42] Stacked LSTM for Short-Term Traffic Flow Prediction using Multivariate Time Series Dataset
    Md Ashifuddin Mondal
    Zeenat Rehena
    Arabian Journal for Science and Engineering, 2022, 47 : 10515 - 10529
  • [43] Stacked LSTM for Short-Term Traffic Flow Prediction using Multivariate Time Series Dataset
    Mondal, Md Ashifuddin
    Rehena, Zeenat
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 10515 - 10529
  • [44] A spatiotemporal grammar network model with wide attention for short-term traffic flow prediction
    Zhang, Zhao
    Jiao, Xiaohong
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2023, 11 (01) : 801 - 825
  • [45] A deep network with analogous self-attention for short-term traffic flow prediction
    Zhang, Zhao
    Jiao, Xiaohong
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (07) : 902 - 915
  • [46] A Short-term Traffic Speed Prediction Model Based on LSTM Networks
    Hsueh, Yu-Ling
    Yang, Yu-Ren
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2021, 19 (03) : 510 - 524
  • [47] A Short-term Traffic Speed Prediction Model Based on LSTM Networks
    Yu-Ling Hsueh
    Yu-Ren Yang
    International Journal of Intelligent Transportation Systems Research, 2021, 19 : 510 - 524
  • [48] The Short-Term Exit Traffic Prediction of a Toll Station Based on LSTM
    Lin, Ying
    Wang, Runfang
    Zhu, Rui
    Li, Tong
    Wang, Zhan
    Chen, Maoyu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2020), PT II, 2020, 12275 : 462 - 471
  • [49] A Multifeature Fusion Short-Term Traffic Flow Prediction Model Based on Deep Learnings
    Chai, Chunxu
    Ren, Chuanxiang
    Yin, Changchang
    Xu, Hui
    Meng, Qiu
    Teng, Juan
    Gao, Ge
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [50] Short-term Vehicle Speed Prediction Based on Convolutional Bidirectional LSTM Networks
    Han, Shaojian
    Zhang, Fengqi
    Xi, Junqiang
    Ren, Yanfei
    Xu, Shaohang
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 4055 - 4060