The variational approach to Hamilton-Jacobi equations driven by a Gaussian noise

被引:0
|
作者
Barbu, Viorel [1 ,2 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Romanian Acad, Octav Mayer Inst Math, Iasi, Romania
关键词
Hamilton-Jacobi equation; Brownian motion; Viscosity solution; Stochastic process; VISCOSITY SOLUTIONS; INTEGRALS;
D O I
10.1016/j.jde.2013.07.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The global existence and uniqueness of viscosity solutions to the Cauchy problem for the Hamilton-Jacobi equations in RN driven by additive and multiplicative Wiener processes are studied for convex Hamiltonians via variational techniques. The finite speed of propagation is also established in the multiplicative noise case for equations with Lipschitzian Hamiltonians. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3832 / 3847
页数:16
相关论文
共 50 条
  • [41] Symplectic topology and Hamilton-Jacobi equations
    Viterbo, C
    Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 2006, 217 : 439 - 459
  • [42] Parabolic perturbations of Hamilton-Jacobi equations
    Sinai, Y
    FUNDAMENTA MATHEMATICAE, 1998, 157 (2-3) : 299 - 303
  • [43] On the extension of the solutions of Hamilton-Jacobi equations
    Albano, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1421 - 1425
  • [44] Representations of solutions of Hamilton-Jacobi equations
    Dolcetta, IC
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 79 - 90
  • [45] The relaxing schemes for Hamilton-Jacobi equations
    Tang, HZ
    Wu, HM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) : 231 - 240
  • [46] GENERALIZED CHARACTERISTICS OF HAMILTON-JACOBI EQUATIONS
    SUBBOTIN, AI
    TARASYEV, AM
    USHAKOV, VN
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (02) : 157 - 163
  • [47] Regularity of solutions to Hamilton-Jacobi equations
    Mennucci, ACG
    SYSTEM THEORY: MODELING, ANALYSIS, AND CONTROL, 2000, 518 : 63 - 74
  • [48] Nonuniqueness in systems of Hamilton-Jacobi equations
    Ostrov, DN
    OPTIMAL CONTROL, STABILIZATON AND NONSMOOTH ANALYSIS, 2004, 301 : 49 - 59
  • [49] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [50] Hamilton-Jacobi Equations on Graph and Applications
    Shu, Yan
    POTENTIAL ANALYSIS, 2018, 48 (02) : 125 - 157