SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries

被引:721
|
作者
Chen, Jun Song [1 ,2 ]
Lou, Xiong Wen [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU, Singapore 637553, Singapore
关键词
ONE-POT SYNTHESIS; POLYCRYSTALLINE SNO2 NANOTUBES; LARGE-SCALE SYNTHESIS; MULTIWALLED CARBON NANOTUBES; CAPACITY ANODE MATERIAL; GAS-SENSING PROPERTIES; AT-CNT NANOSTRUCTURES; HYBRID HOLLOW SPHERES; CORE-SHELL; STORAGE PROPERTIES;
D O I
10.1002/smll.201202601
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of new electrode materials for lithium-ion batteries (LIBs) has always been a focal area of materials science, as the current technology may not be able to meet the high energy demands for electronic devices with better performance. Among all the metal oxides, tin dioxide (SnO2) is regarded as a promising candidate to serve as the anode material for LIBs due to its high theoretical capacity. Here, a thorough survey is provided of the synthesis of SnO2-based nanomaterials with various structures and chemical compositions, and their application as negative electrodes for LIBs. It covers SnO2 with different morphologies ranging from 1D nanorods/nanowires/nanotubes, to 2D nanosheets, to 3D hollow nanostructures. Nanocomposites consisting of SnO2 and different carbonaceous supports, e.g., amorphous carbon, carbon nanotubes, graphene, are also investigated. The use of Sn-based nanomaterials as the anode material for LIBs will be briefly discussed as well. The aim of this review is to provide an in-depth and rational understanding such that the electrochemical properties of SnO2-based anodes can be effectively enhanced by making proper nanostructures with optimized chemical composition. By focusing on SnO2, the hope is that such concepts and strategies can be extended to other potential metal oxides, such as titanium dioxide or iron oxides, thus shedding some light on the future development of high-performance metal-oxide based negative electrodes for LIBs.
引用
收藏
页码:1877 / 1893
页数:17
相关论文
共 50 条
  • [31] Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries
    Tan, Qingke
    Kong, Zhen
    Chen, Xiaojing
    Zhang, Lei
    Hu, Xiaoqi
    Mu, Mengxin
    Sun, Haochen
    Shao, Xinchun
    Guan, Xianggang
    Gao, Min
    Xu, Binghui
    APPLIED SURFACE SCIENCE, 2019, 485 : 314 - 322
  • [32] Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries
    I. A. Stenina
    T. L. Kulova
    A. V. Desyatov
    A. B. Yaroslavtsev
    Russian Journal of Electrochemistry, 2022, 58 : 658 - 666
  • [33] Hydrothermal synthesis of SnO nanoflakes as anode materials for lithium-ion batteries
    Zhu, Luming
    Yang, Hong
    Jin, Dalai
    Zhu, Hongliang
    INORGANIC MATERIALS, 2007, 43 (12) : 1307 - 1312
  • [34] Flame synthesis of single crystalline SnO nanoplatelets for lithium-ion batteries
    Hu, Yanjie
    Xu, Kexin
    Kong, Lingyan
    Jiang, Hao
    Zhang, Ling
    Li, Chunzhong
    CHEMICAL ENGINEERING JOURNAL, 2014, 242 : 220 - 225
  • [35] Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries
    Stenina, I. A.
    Kulova, T. L.
    Desyatov, A., V
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (08) : 658 - 666
  • [36] Hydrothermal synthesis of SnO nanoflakes as anode materials for lithium-ion batteries
    Luming Zhu
    Hong Yang
    Dalai Jin
    Hongliang Zhu
    Inorganic Materials, 2007, 43 : 1307 - 1312
  • [37] Synthesis and application of electrode materials for lithium-ion batteries
    Wu Jiayi
    2019 3RD INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2019), 2019, 267
  • [38] Synthesis of mesoporous SnO2 and its application in lithium-ion battery
    Wang Jian-Hua
    Li Bin
    Wu Hai-Yan
    Guo Yu-Zhong
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (04) : 681 - 685
  • [39] Synthesis of porous SnO2 nanospheres and their application for lithium-ion battery
    Wen, Zhigang
    Zheng, Feng
    Liu, Kanglian
    MATERIALS LETTERS, 2012, 68 : 469 - 471
  • [40] TiO2-Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries
    Pinilla, Sergio
    Machin, Abniel
    Park, Sang-Hoon
    Arango, Juan C.
    Nicolosi, Valeria
    Marquez-Linares, Francisco
    Morant, Carmen
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (02): : 972 - 983