An AI-assisted tool for efficient prostate cancer diagnosis in low-grade and low-volume cases

被引:3
|
作者
Oner, Mustafa Umit [1 ,2 ,3 ]
Ng, Mei Ying [1 ]
Giron, Danilo Medina [4 ]
Xi, Cecilia Ee Chen [1 ]
Xiang, Louis Ang Yuan [1 ]
Singh, Malay [1 ]
Yu, Weimiao [1 ,5 ]
Sung, Wing-Kin [2 ,6 ]
Wong, Chin Fong [4 ]
Lee, Hwee Kuan [1 ,2 ,7 ,8 ,9 ,10 ]
机构
[1] ASTAR, Bioinformat Inst, Singapore 138671, Singapore
[2] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
[3] Bahcesehir Univ, Dept Artificial Intelligence Engn, TR-34353 Istanbul, Turkey
[4] Tan Tock Seng Hosp, Dept Pathol, Singapore 308433, Singapore
[5] ASTAR, Inst Mol & Cell Biol, Singapore 138673, Singapore
[6] ASTAR, Genome Inst Singapore, Singapore 138672, Singapore
[7] Singapore Eye Res Inst SERI, Singapore 169856, Singapore
[8] Image & Pervas Access Lab IPAL, Singapore 138632, Singapore
[9] Rehabil Res Inst Singapore, Singapore 308232, Singapore
[10] Singapore Inst Clin Sci, Singapore 117609, Singapore
来源
PATTERNS | 2022年 / 3卷 / 12期
关键词
WHOLE-SLIDE IMAGES; ARTIFICIAL-INTELLIGENCE; BIOPSIES;
D O I
10.1016/j.patter.2022.100642
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep- learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and lowvolume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985-0.997) in the external validation study, showing the generalizability of our multi-resolution approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Healthy diet may reduce the risk of low-grade prostate cancer progressing to a higher grade
    Nierengarten, Mary Beth
    CANCER, 2025, 131 (04)
  • [42] DECISIONAL CONFLICT ABOUT TREATMENT IS PERSISTENT IN MEN WITH LOW-GRADE PROSTATE CANCER AND THEIR CLOSE ALLIES AFTER DIAGNOSIS
    Shaffer, Kelly
    Schofield, Elizabeth
    Diefenbach, Michael A.
    Nelson, Christian
    ANNALS OF BEHAVIORAL MEDICINE, 2018, 52 : S206 - S206
  • [43] Diagnostic molecular markers predicting aggressive potential in low-grade prostate cancer
    Saran, Uttara
    Chandrasekaran, Balaji
    Kolluru, Venkatesh
    Tyagi, Ashish
    Nguyen, Kristy D.
    Valadon, Crystal L.
    Shaheen, Saad P.
    Kong, Maiying
    Poddar, Triparna
    Ankem, Murali K.
    Damodaran, Chendil
    TRANSLATIONAL RESEARCH, 2021, 231 : 92 - 101
  • [44] Stereotactic radiotherapy plus amifostine in patients with low-grade prostate cancer.
    Montchal, Elaine
    Katz, Alan J.
    Witten, Matthew
    ONCOLOGY NURSING FORUM, 2007, 34 (02) : 482 - 483
  • [45] IMPROVED DETECTION OF LOW-GRADE PROSTATE CANCER BY PSA-IGM ASSESSMENT
    Verna, Michela
    Pengo, Paolo
    Gallotta, Andrea
    Zani, Danilo
    Costa, Silvia
    Leon, Antonette E.
    Gion, Massimo
    Fassina, Giorgio
    Beneduce, Luca
    ANTICANCER RESEARCH, 2010, 30 (04) : 1486 - 1487
  • [47] FGFR3 mutations in prostate cancer: association with low-grade tumors
    Hernandez, Silvia
    de Muga, Silvia
    Agell, Laia
    Juanpere, Nuria
    Esgueva, Raquel
    Lorente, Jose A.
    Mojal, Sergi
    Serrano, Sergio
    Lloreta, Josep
    MODERN PATHOLOGY, 2009, 22 (06) : 848 - 856
  • [48] Multiparametric MRI margin characterization for focal brachytherapy in low-grade prostate cancer
    Ken, S.
    Arnaud, F.
    Aziza, R.
    Portalez, D.
    Malavaud, B.
    Bachaud, J.
    Graff-Cailleaud, P.
    Arnault, S.
    Lusque, A.
    Brun, T.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S87 - S88
  • [49] Assessment of circulating tumor cells (CTCs) in prostate cancer patients with low-volume tumors
    Ali, Amina
    Furusato, Bungo
    Ts'o, Paul O. P.
    Lum, Zhao-Ping
    Elsamanoudi, Sally
    Mohamed, Ahmed
    Srivastava, Shiv
    Moul, Judd W.
    Brassell, Stephen A.
    Sesterhenn, Isabell A.
    McLeod, David G.
    PATHOLOGY INTERNATIONAL, 2010, 60 (10) : 667 - 672
  • [50] Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools
    Alqahtani, Saeed
    DIAGNOSTICS, 2024, 14 (22)