An AI-assisted tool for efficient prostate cancer diagnosis in low-grade and low-volume cases

被引:3
|
作者
Oner, Mustafa Umit [1 ,2 ,3 ]
Ng, Mei Ying [1 ]
Giron, Danilo Medina [4 ]
Xi, Cecilia Ee Chen [1 ]
Xiang, Louis Ang Yuan [1 ]
Singh, Malay [1 ]
Yu, Weimiao [1 ,5 ]
Sung, Wing-Kin [2 ,6 ]
Wong, Chin Fong [4 ]
Lee, Hwee Kuan [1 ,2 ,7 ,8 ,9 ,10 ]
机构
[1] ASTAR, Bioinformat Inst, Singapore 138671, Singapore
[2] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
[3] Bahcesehir Univ, Dept Artificial Intelligence Engn, TR-34353 Istanbul, Turkey
[4] Tan Tock Seng Hosp, Dept Pathol, Singapore 308433, Singapore
[5] ASTAR, Inst Mol & Cell Biol, Singapore 138673, Singapore
[6] ASTAR, Genome Inst Singapore, Singapore 138672, Singapore
[7] Singapore Eye Res Inst SERI, Singapore 169856, Singapore
[8] Image & Pervas Access Lab IPAL, Singapore 138632, Singapore
[9] Rehabil Res Inst Singapore, Singapore 308232, Singapore
[10] Singapore Inst Clin Sci, Singapore 117609, Singapore
来源
PATTERNS | 2022年 / 3卷 / 12期
关键词
WHOLE-SLIDE IMAGES; ARTIFICIAL-INTELLIGENCE; BIOPSIES;
D O I
10.1016/j.patter.2022.100642
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep- learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and lowvolume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985-0.997) in the external validation study, showing the generalizability of our multi-resolution approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A nomogram for predicting low-volume/low-grade prostate cancer - A tool in selecting patients for active surveillance
    Nakanishi, Hiroyuki
    Wang, Xuemei
    Ochiai, Atsushi
    Trpkov, Kiril
    Yilmaz, Asli
    Donnelly, J. Bryan
    Davis, John W.
    Troncoso, Patricia
    Babaian, R. Joseph
    CANCER, 2007, 110 (11) : 2441 - 2447
  • [2] 'Insignificant' prostate cancer on prostatectomy and cystoprostatectomy: variation on a theme 'low-volume/low-grade' prostate cancer?
    Trpkov, Kiril
    Yilmaz, Asli
    Bismar, Tarek A.
    Montironi, Rodolfo
    BJU INTERNATIONAL, 2010, 106 (03) : 304 - 315
  • [3] Further Support for Active Surveillance in the Management of Low-Volume, Low-Grade Prostate Cancer
    Albertsen, Peter
    EUROPEAN UROLOGY, 2010, 58 (06) : 836 - 837
  • [4] Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy?
    Ahmed, Hashim Uddin
    Arya, Manit
    Freeman, Alex
    Emberton, Mark
    LANCET ONCOLOGY, 2012, 13 (11): : E509 - E517
  • [5] A nomogram based on an extended biopsy strategy predicting low-volume/low-grade prostate cancer: A tool in selecting active surveillance patients
    Nakanishi, H.
    Wang, X.
    Ochiai, A.
    Trpkov, K.
    Yilmaz, A.
    Donnelly, J. B.
    Troncoso, P.
    Davis, J.
    Babaian, R. J.
    EUROPEAN UROLOGY SUPPLEMENTS, 2007, 6 (02) : 202 - 202
  • [6] CONFORMAL STATIC-FIELD THERAPY FOR LOW-VOLUME LOW-GRADE PROSTATE-CANCER WITH RIGID IMMOBILIZATION
    SOFFEN, EM
    HANKS, GE
    CHIN, CH
    CHU, JCH
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 20 (01): : 141 - 146
  • [7] PCA3 SCORE BASED NOMOGRAM TO PREDICT LOW-VOLUME/LOW-GRADE PROSTATE CANCER IN RADICAL PROSTATECTOMY SPECIMENS
    Ward, John F., III
    Graefen, Markus
    Huland, Hartwig
    Koellermann, Jens
    Sauter, Guido
    Wang, Xuemei
    Haese, Alexander
    Troncoso, Patricia
    Babaian, R. Joseph
    Chun, Felix K. H.
    JOURNAL OF UROLOGY, 2009, 181 (04): : 56 - 56
  • [8] AI-Assisted Tool for Early Diagnosis and Prevention of Colorectal Cancer in Africa
    Ibnauf, Bushra
    Ezz, Mohammed Aboul
    Aziz, Ayman Abdel
    ElGazzar, Khalid
    Siam, Mennatullah
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6362 - 6369
  • [9] LOW-GRADE, LATENT PROSTATE-CANCER VOLUME - PREDICTOR OF CLINICAL CANCER INCIDENCE
    WHITTEMORE, AS
    KELLER, JB
    BETENSKY, R
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1991, 83 (17) : 1231 - 1235
  • [10] Low-dose-rate brachytherapy for low-grade prostate cancer
    Raabe, Nils Kristian
    Normann, Marius
    Lilleby, Wolfgang
    TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2015, 135 (06) : 548 - 552