Enhanced Active Segment Selection for Single-Trial EEG Classification

被引:22
|
作者
Hsu, Wei-Yen [1 ,2 ]
机构
[1] Taipei Med Univ, Grad Inst Biomed Informat, Taipei 110, Taiwan
[2] Natl Chung Cheng Univ, Dept Informat Management, Taipei, Taiwan
关键词
brain-computer interface (BCI); electroencephalogram (EEG); active segment selection; wavelet transform; modified fractal dimension; support vector machine (SVM); BRAIN-COMPUTER INTERFACE; HOPFIELD NEURAL-NETWORK; FRACTAL FEATURES; SYNCHRONIZATION; TRANSFORM; IMAGES;
D O I
10.1177/1550059412445051
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
In this study, an electroencephalogram (EEG) analysis system is proposed for single-trial classification of both motor imagery (MI) and finger-lifting EEG data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system mainly consists of three procedures; enhanced active segment selection, feature extraction, and classification. In addition to the original use of continuous wavelet transform (CWT) and Student 2-sample t statistics, the two-dimensional (2D) anisotropic Gaussian filter further refines the selection of active segments. The multiresolution fractal features are then extracted from wavelet data by using proposed modified fractal dimension. Finally, the support vector machine (SVM) is used for classification. Compared to original active segment selection, with several popular features and classifier on both the MI and finger-lifting data from 2 data sets, the results indicate that the proposed method is promising in EEG classification.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [31] Local temporal common spatial patterns for robust single-trial EEG classification
    Wang, Haixian
    Zheng, Wenming
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (02) : 131 - 139
  • [32] Combining spatial filters for the classification of, single-trial EEG in a finger movement task
    Liao, Xiang
    Yao, Dezhong
    Wu, Dan
    Li, Chaoyi
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (05) : 821 - 831
  • [33] Single-Trial EEG Classification Using Logistic Regression Based on Ensemble Synchronization
    Prasad, Pradeep D.
    Halahalli, Harsha N.
    John, John P.
    Majumdar, Kaushik K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (03) : 1074 - 1080
  • [34] Designing optimal spatial filters for single-trial EEG classification in a movement task
    Müller-Gerking, J
    Pfurtscheller, G
    Flyvbjerg, H
    CLINICAL NEUROPHYSIOLOGY, 1999, 110 (05) : 787 - 798
  • [35] Optimal Local Temporal Common Spatial Patterns for Single-trial EEG Classification
    Huang, Xiaohua
    Zheng, Wenming
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL II, 2009, : 150 - 154
  • [36] Single-trial decoding of intention from EEG
    Ramaswamy, V
    Furstenberg, A.
    Breska, A.
    Deouell, L.
    Sompolinsky, H.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2013, 51 : S96 - S96
  • [37] Single-trial classification of MEG recordings
    Guimaraes, Marcos Perreau
    Wong, Dik Kin
    Uy, E. Timothy
    Grosenick, Logan
    Suppes, Patrick
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (03) : 436 - 443
  • [38] A Representational Similarity Analysis of the Dynamics of Object Processing Using Single-Trial EEG Classification
    Kaneshiro, Blair
    Guimaraes, Marcos Perreau
    Kim, Hyung-Suk
    Norcia, Anthony M.
    Suppes, Patrick
    PLOS ONE, 2015, 10 (08):
  • [39] Nonparametric Single-Trial EEG Feature Extraction and Classification of Driver's Cognitive Responses
    Chin-Teng Lin
    Ken-Li Lin
    Li-Wei Ko
    Sheng-Fu Liang
    Bor-Chen Kuo
    I-Fang Chung
    EURASIP Journal on Advances in Signal Processing, 2008
  • [40] Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG classification
    Hsu, Wei-Yen
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 1055 - 1061