NetCluster: A clustering-based framework to passive measurements data analyze internet

被引:4
|
作者
Baralis, Elena [1 ]
Bianco, Andrea [2 ]
Cerquitelli, Tania [1 ]
Chiaraviglio, Luca [3 ]
Mellia, Marco [2 ]
机构
[1] Politecn Torino, Dipartimento Automat & Informat, Turin, Italy
[2] Politecn Torino, Dipartimento Elettron & Telecomunicaz, Turin, Italy
[3] Univ Nice Sophia, CNRS, Mascotte, INRIA,I3S, Sophia Antipolis, France
关键词
Clustering algorithms; Data analytics; Internet measurements and characterization; ALGORITHM;
D O I
10.1016/j.comnet.2013.07.019
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Internet measured data collected via passive measurement are analyzed to obtain localization information on nodes by clustering (i.e., grouping together) nodes that exhibit similar network path properties. Since traditional clustering algorithms fail to correctly identify clusters of homogeneous nodes, we propose the NetCluster novel framework, suited to analyze Internet measurement datasets. We show that the proposed framework correctly analyzes.synthetically generated traces. Finally, we apply it to real traces collected at the access link of Politecnico di Torino campus LAN and discuss the network characteristics as seen at the vantage point. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3300 / 3315
页数:16
相关论文
共 50 条
  • [41] Clustering-Based Federated Learning for Heterogeneous IoT Data
    Li, Shumin
    Wei, Linna
    Zhang, Weidong
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 172 - 179
  • [42] Graph clustering-based discretization approach to microarray data
    Sriwanna, Kittakorn
    Boongoen, Tossapon
    Iam-On, Natthakan
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 879 - 906
  • [43] Clustering-based materialized view selection in data warehouses
    Aouiche, Kamel
    Jouve, Pierre-Emmanuel
    Darmont, Jerome
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS, PROCEEDINGS, 2006, 4152 : 81 - 95
  • [44] Fuzzy Clustering-based Prediction of Marine Sensor Data
    O'Mara, Aidan
    Shahriar, Md. Sumon
    2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 364 - 368
  • [45] Fast clustering-based anonymization algorithm for data streams
    Guo, Kun
    Zhang, Qi-Shan
    Ruan Jian Xue Bao/Journal of Software, 2013, 24 (08): : 1852 - 1867
  • [46] A Clustering-Based Data Reduction for the Large Automotive Datasets
    Siwek, Patryk
    Skruch, Pawel
    Dlugosz, Marek
    2023 27TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR, 2023, : 234 - 239
  • [47] Clustering-based incremental learning for imbalanced data classification
    Liu, Yuxin
    Du, Guangyu
    Yin, Chenke
    Zhang, Hachao
    Wang, Jia
    Knowledge-Based Systems, 2024, 292
  • [48] A clustering-based hybrid approach for dual data reduction
    Ratnoo, Saroj
    Rathee, Seema
    Ahuja, Jyoti
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2018, 6 (05) : 468 - 490
  • [49] A Dynamic Clustering-Based Hierarchical Federated Learning Scheme in Internet of Vehicles
    Wen, Lihang
    Qi, Weijing
    Lin, Yufeng
    Song, Qingyang
    Guo, Lei
    Jamalipour, Abbas
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (12) : 2935 - 2939
  • [50] Clustering-based histograms for multi-dimensional data
    Furfaro, F
    Mazzeo, GM
    Sirangelo, C
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2005, 3589 : 478 - 487