NetCluster: A clustering-based framework to passive measurements data analyze internet

被引:4
|
作者
Baralis, Elena [1 ]
Bianco, Andrea [2 ]
Cerquitelli, Tania [1 ]
Chiaraviglio, Luca [3 ]
Mellia, Marco [2 ]
机构
[1] Politecn Torino, Dipartimento Automat & Informat, Turin, Italy
[2] Politecn Torino, Dipartimento Elettron & Telecomunicaz, Turin, Italy
[3] Univ Nice Sophia, CNRS, Mascotte, INRIA,I3S, Sophia Antipolis, France
关键词
Clustering algorithms; Data analytics; Internet measurements and characterization; ALGORITHM;
D O I
10.1016/j.comnet.2013.07.019
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Internet measured data collected via passive measurement are analyzed to obtain localization information on nodes by clustering (i.e., grouping together) nodes that exhibit similar network path properties. Since traditional clustering algorithms fail to correctly identify clusters of homogeneous nodes, we propose the NetCluster novel framework, suited to analyze Internet measurement datasets. We show that the proposed framework correctly analyzes.synthetically generated traces. Finally, we apply it to real traces collected at the access link of Politecnico di Torino campus LAN and discuss the network characteristics as seen at the vantage point. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3300 / 3315
页数:16
相关论文
共 50 条
  • [1] Net Cluster: a Clustering-Based Framework for Internet Tomography
    Baralis, Elena
    Bianco, Andrea
    Cerquitelli, Tania
    Chiaraviglio, Luca
    Mellia, Marco
    2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 2288 - +
  • [2] Optimized clustering-based discovery framework on Internet of Things
    Bharti, Monika
    Jindal, Himanshu
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (02): : 1739 - 1778
  • [3] Optimized clustering-based discovery framework on Internet of Things
    Monika Bharti
    Himanshu Jindal
    The Journal of Supercomputing, 2021, 77 : 1739 - 1778
  • [4] A Clustering-based Framework for Classifying Data Streams
    Yan, Xuyang
    Homaifar, Abdollah
    Sarkar, Mrinmoy
    Girma, Abenezer
    Tunstel, Edward
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3257 - 3263
  • [5] Hybrid clustering-based bad data detection of PMU measurements
    Zhu, Yanming
    Xu, Xiaoyuan
    Yan, Zheng
    Energy Conversion and Economics, 2021, 2 (04): : 235 - 247
  • [6] Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles
    Jin, Zilong
    Wang, Jin
    Zhang, Lejun
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (06): : 1462 - 1477
  • [7] A clustering-based selective probing framework to support Internet Quality of Service routing
    Jariyakul, N
    Znati, T
    DISTRIBUTED COMPUTING - IWDC 2005, PROCEEDINGS, 2005, 3741 : 368 - 379
  • [8] Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data
    Ishii, Satoshi
    Kadota, Koji
    Senoo, Keishi
    JOURNAL OF MICROBIOLOGICAL METHODS, 2009, 78 (03) : 344 - 350
  • [9] Understanding time use via data mining: A clustering-based framework
    Rosales-Salas, Jorge
    Maldonado, Sebastian
    Seret, Alex
    INTELLIGENT DATA ANALYSIS, 2018, 22 (03) : 597 - 616
  • [10] A Clustering-based Framework for Fast Training of Classifiers
    Sathyamoorthy, Sruthi
    Sivasankar, E.
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,