Prime power graphs for groups of Lie type

被引:46
|
作者
Kantor, WM [1 ]
Seress, K
机构
[1] Univ Oregon, Eugene, OR 97403 USA
[2] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.2001.9016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We associate a weighted graph Delta(G) to each finite simple group G of Lie type, We show that, with an explicit list of exceptions, Delta(G) determines G up to isomorphism, and for these exceptions, Delta(G) nevertheless determines the characteristic of G. This result was motivated by algorithmic considerations. We prove that for any finite simple group G of Lie type, input as a black-box group with an oracle to compute the orders of group elements, Delta(G) and the characteristic of G can be computed by a Monte Carlo algorithm in time polynomial in the input length. The characteristic is needed as part of the input in a previous constructive recognition algorithm for G. (C) 2002 Elsevier Science.
引用
收藏
页码:370 / 434
页数:65
相关论文
共 50 条
  • [21] A characterization of the prime graphs of solvable groups
    Gruber, Alexander
    Keller, Thomas Michael
    Lewis, Mark L.
    Naughton, Keeley
    Strasser, Benjamin
    JOURNAL OF ALGEBRA, 2015, 442 : 397 - 422
  • [22] Modular Lie representations of groups of prime order
    R.M. Bryant
    Mathematische Zeitschrift, 2004, 246 : 603 - 617
  • [23] LIE-RINGS OF GROUPS OF PRIME EXPONENT
    VAUGHANLEE, MR
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 49 : 386 - 398
  • [24] Modular Lie representations of groups of prime order
    Bryant, RM
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (03) : 603 - 617
  • [25] Lie powers of modules for groups of prime order
    Bryant, RM
    Kovács, LG
    Stöhr, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 : 343 - 374
  • [26] ON THE PRIME GRAPHS OF THE AUTOMORPHISM GROUPS OF SPORADIC SIMPLE GROUPS
    Khosravi, Behrooz
    ARCHIVUM MATHEMATICUM, 2009, 45 (02): : 83 - 94
  • [27] DIVERGENCE IN LATTICES IN SEMISIMPLE LIE GROUPS AND GRAPHS OF GROUPS
    Drutu, Cornelia
    Mozes, Shahar
    Sapir, Mark
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (05) : 2451 - 2505
  • [28] COVERING GROUPS OF GROUPS OF LIE TYPE
    GROVER, J
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 30 (03) : 645 - &
  • [29] The prime graphs of some classes of finite groups
    Florez, Chris
    Higgins, Jonathan
    Huang, Kyle
    Keller, Thomas Michael
    Shen, Dawei
    Yang, Yong
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (07)
  • [30] Groups whose prime graphs have no triangles
    Tong-Viet, Hung P.
    JOURNAL OF ALGEBRA, 2013, 378 : 196 - 206