3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks

被引:115
|
作者
Rastin, Hadi [1 ]
Zhang, Bingyang [1 ]
Mazinani, Arash [1 ]
Hassan, Kamrul [1 ]
Bi, Jingxiu [1 ]
Tran Thanh Tung [1 ]
Losic, Dusan [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
关键词
HYDROGELS; COMPOSITE; FIBERS;
D O I
10.1039/d0nr02581j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes, a new family of burgeoning two-dimensional (2D) transition metal carbides/nitrides, have been extensively explored in recent years owing to their outstanding properties such as a large specific surface area, high electrical conductivity, low toxicity, and biodegradability. Numerous efforts have been devoted to exploring MXenes for various biomedical applications such as cancer therapy, bioimaging, biosensing, and drug delivery. However, the potential application of MXene nanosheets in tissue engineering has been almost overlooked despite their excellent performance in other biomedical applications. The over-arching goal of this paper is to demonstrate the potential of MXene cell-laden bioinks for tissue engineering and their ability to assemble functional scaffolds to regenerate damaged tissue via 3D bioprinting. We formulate a new electroconductive cell-laden bioink composed of Ti3C2 MXene nanosheets dispersed homogeneously within hyaluronic acid/alginate (HA/Alg) hydrogels and showed its performance for extrusion-based 3D bioprinting. The prepared hydrogel bioinks with MXenes display excellent rheological properties, which allows the fabrication of multilayered 3D structures with high resolution and shape retention. Moreover, the introduction of Ti3C2 MXene nanosheets within the HA/Alg hydrogel introduces electrical conductivity to the ink, addressing the poor electrical conductivity of the current bioinks that mismatch with the physico-chemical properties of tissue. In addition, the MXene nanocomposite ink with encapsulated Human Embryonic Kidney 293 (HEK-293) cells displayed high cell viability (>95%) in both bulk hydrogel and 3D bioprinted structures. These results suggest that MXene nanocomposite bioinks and their 3D bioprinting with high electrical conductivity, biocompatibility and degradability can synergize some new applications for tissue and neural engineering.
引用
收藏
页码:16069 / 16080
页数:12
相关论文
共 50 条
  • [41] Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks
    Jahangir, Shahrbanoo
    Vecstaudza, Jana
    Augurio, Adriana
    Canciani, Elena
    Stipniece, Liga
    Locs, Janis
    Alini, Mauro
    Serra, Tiziano
    MATERIALS, 2023, 16 (22)
  • [42] Engineering bioinks for 3D bioprinting
    Decante, Guy
    Costa, Joao B.
    Silva-Correia, Joana
    Collins, Maurice N.
    Reis, Rui L.
    Oliveira, J. Miguel
    BIOFABRICATION, 2021, 13 (03)
  • [43] 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy
    Yin, Jun
    Yan, Mengling
    Wang, Yancheng
    Fu, Jianzhong
    Suo, Hairui
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) : 6849 - 6857
  • [44] Hybrid 3D Printing of Synthetic and Cell-Laden Bioinks for Shape Retaining Soft Tissue Grafts
    Van Belleghem, Sarah
    Torres, Leopoldo, Jr.
    Santoro, Marco
    Mahadik, Bhushan
    Wolfand, Arley
    Kofinas, Peter
    Fisher, John P.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (03)
  • [45] 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair
    Das, Sanskrita
    Nam, Hyoryung
    Jang, Jinah
    APL BIOENGINEERING, 2021, 5 (03)
  • [46] Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks
    Shao, Lei
    Gao, Qing
    Xie, Chaoqi
    Fu, Jianzhong
    Xiang, Meixiang
    He, Yong
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (15)
  • [47] Bioinks for 3D bioprinting: an overview
    Gungor-Ozkerim, P. Selcan
    Inci, Ilyas
    Zhang, Yu Shrike
    Khademhosseini, Ali
    Dokmeci, Mehmet Remzi
    BIOMATERIALS SCIENCE, 2018, 6 (05) : 915 - 946
  • [48] Collagen Bioinks for 3D Bioprinting
    Bagley, B.
    TISSUE ENGINEERING PART A, 2017, 23 : S57 - S57
  • [49] Collagen-based bioink for 3D bioprinting to obtain mechanically enhanced porous 3D cell-laden structure
    Koo, YoungWon
    Lee, Hyeongjin
    Kim, WonJin
    Lee, Jiun
    Jo, SeoYul
    Kim, GeunHyung
    TISSUE ENGINEERING PART A, 2022, 28 : 691 - 691
  • [50] Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold
    Filardo, G.
    Petretta, M.
    Cavallo, C.
    Roseti, L.
    Durante, S.
    Albisinni, U.
    Grigolo, B.
    BONE & JOINT RESEARCH, 2019, 8 (02): : 101 - 106