Quantum entanglement in the one-dimensional anyonic Hubbard model

被引:1
|
作者
Ramadas, N. [1 ]
Sreedhar, V. V. [1 ]
机构
[1] Chennai Math Inst, PLOT H1,SIPCOT IT Pk, Chennai 603103, India
关键词
Anyons; Hubbard model; Quantum entanglement;
D O I
10.1016/j.aop.2022.168908
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Issues related to quantum entanglement in systems of indistinguishable particles, as discussed in the information theoretic approach, are extended to anyonic statistics. Local and non local measurements discussed in this framework are carefully analyzed in the two-site anyonic Hubbard model which provides a concrete case-study. The von Neumann entropy, the single particle reduced density matrix, the pair correlation function, and the pseudo-momentum distribution function are worked out paying special attention to the dependence on the statistics parameter. Restrictions arising from superselection rules for anyons are outlined. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Quantum phase transition in a one-dimensional Holstein-Hubbard model at half-filling in the thermodynamic limit: A quantum entanglement approach
    Sankar, I. V.
    Chatterjee, Ashok
    PHYSICA B-CONDENSED MATTER, 2016, 489 : 17 - 22
  • [22] Squashed entanglement in one-dimensional quantum matter
    Maiellaro, Alfonso
    Romeo, Francesco
    Citro, Roberta
    Illuminati, Fabrizio
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [23] Entanglement and quantum phase transition in the one-dimensional anisotropic XY model
    Ma, Fu-Wu
    Liu, Sheng-Xin
    Kong, Xiang-Mu
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [24] Quantum phase transition and entanglement of one-dimensional spinless fermion model
    de Ouyang, Sheng
    Mi, Xian Wu
    Zhou, Yue Bing
    Chen, Xiong Wen
    Song, Ke Hui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (32):
  • [25] Integrable variant of the one-dimensional Hubbard model
    Guan, XW
    Foerster, A
    Links, J
    Zhou, HQ
    Tonel, AP
    McKenzie, RH
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) : 3445 - 3457
  • [26] DENSITY OF STATES IN ONE-DIMENSIONAL HUBBARD MODEL
    ELK, K
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 50 (02): : 439 - &
  • [27] Quantum integrability for the one-dimensional Hubbard open chain
    Zhou, HQ
    PHYSICAL REVIEW B, 1996, 54 (01): : 41 - 43
  • [28] SUSCEPTIBILITY OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    MILA, F
    PENC, K
    PHYSICAL REVIEW B, 1995, 51 (03): : 1997 - 2000
  • [29] EXCITATION SPECTRUM OF ONE-DIMENSIONAL HUBBARD MODEL
    COLL, CF
    PHYSICAL REVIEW B, 1974, 9 (05): : 2150 - 2158
  • [30] Umklapp scattering in the one-dimensional Hubbard model
    Liu, Tong
    Wang, Kang
    Chi, Runze
    Liu, Yang
    Liao, Haijun
    Xiang, T.
    PHYSICAL REVIEW B, 2023, 108 (12)