A Triantagonistic Basic Helix-Loop-Helix System Regulates Cell Elongation in Arabidopsis

被引:148
|
作者
Ikeda, Miho [1 ,2 ]
Fujiwara, Sumire [1 ]
Mitsuda, Nobutaka [1 ]
Ohme-Takagi, Masaru [1 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Bioprod Res Inst, Tsukuba, Ibaraki 3058562, Japan
[2] Japan Soc Promot Sci, Chiyoda Ku, Tokyo 1028472, Japan
[3] Saitama Univ, Inst Environm Sci & Technol, Saitama 3388770, Japan
来源
PLANT CELL | 2012年 / 24卷 / 11期
关键词
BRASSINOSTEROID SIGNAL-TRANSDUCTION; BIMOLECULAR FLUORESCENCE COMPLEMENTATION; TRANSCRIPTION FACTOR FAMILY; PLANT-GROWTH REGULATION; REPRESSION DOMAIN; PROTEIN INTERACTIONS; GENE-EXPRESSION; TARGET GENES; GENOME-WIDE; BLUE-LIGHT;
D O I
10.1105/tpc.112.105023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plants, basic helix-loop-helix (bHLH) transcription factors play important roles in the control of cell elongation. Two bHLH proteins, PACLOBTRAZOL RESISTANCE1 (PRE1) and Arabidopsis ILI1 binding bHLH1 (IBH1), antagonistically regulate cell elongation in response to brassinosteroid and gibberellin signaling, but the detailed molecular mechanisms by which these factors regulate cell elongation remain unclear. Here, we identify the bHLH transcriptional activators for cell elongation (ACEs) and demonstrate that PRE1, IBH1, and the ACEs constitute a triantagonistic bHLH system that competitively regulates cell elongation. In this system, the ACE bHLH transcription factors directly activate the expression of enzyme genes for cell elongation by interacting with their promoter regions. IBH1 negatively regulates cell elongation by interacting with the ACEs and thus interfering with their DNA binding. PRE1 interacts with IBH1 and counteracts the ability of IBH1 to affect ACEs. Therefore, PRE1 restores the transcriptional activity of ACEs, resulting in induction of cell elongation. The balance of triantagonistic bHLH proteins, ACEs, IBH1, and PRE1, might be important for determination of the size of plant cells. The expression of IBH1 and PRE1 is regulated by brassinosteroid, gibberellins, and developmental phase dependent factors, indicating that two phytohormones and phase-dependent signals are integrated by this triantagonistic bHLH system.
引用
收藏
页码:4483 / 4497
页数:15
相关论文
共 50 条
  • [21] Calcium regulation of basic helix-loop-helix transcription factors
    Hermann, S
    Saarikettu, J
    Onions, J
    Hughes, K
    Grundström, T
    CELL CALCIUM, 1998, 23 (2-3) : 135 - 142
  • [22] Muscle basic helix-loop-helix proteins and the regulation of myogenesis
    Wright, Woodring E.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 1992, 2 (02) : 243 - 248
  • [23] BASIC HELIX-LOOP-HELIX TRANSCRIPTION FACTORS IN MYELOID DIFFERENTIATION
    STREIFF, MB
    KATO, GJ
    BLOOD, 1994, 84 (10) : A577 - A577
  • [24] A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean
    Hudson, Karen A.
    Hudson, Matthew E.
    INTERNATIONAL JOURNAL OF GENOMICS, 2015, 2015
  • [25] A genomewide survey of basic helix-loop-helix factors in Drosophila
    Moore, AW
    Barbel, S
    Jan, LY
    Jan, YN
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (19) : 10436 - 10441
  • [26] Phylogenetic Analysis of Plant Basic Helix-Loop-Helix Proteins
    Michael J. Buck
    William R. Atchley
    Journal of Molecular Evolution, 2003, 56 : 742 - 750
  • [27] Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation
    Kondo, T
    Raff, M
    DEVELOPMENT, 2000, 127 (14): : 2989 - 2998
  • [28] Phylogenetic analysis of plant basic helix-loop-helix proteins
    Buck, MJ
    Atchley, WR
    JOURNAL OF MOLECULAR EVOLUTION, 2003, 56 (06) : 742 - 750
  • [29] The role of basic helix-loop-helix genes in vertebrate retinogenesis
    Vetter, ML
    Brown, NL
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2001, 12 (06) : 491 - 498
  • [30] Phylogenetic analysis of the human basic helix-loop-helix proteins
    Valérie Ledent
    Odier Paquet
    Michel Vervoort
    Genome Biology, 3 (6)