On nonstationary von Karman variational inequalities

被引:0
|
作者
Bock, Igor [1 ]
Jarusek, Jiri [1 ]
机构
[1] Slovak Tech Univ, FEI, Dept Math, Bratislava 81219, Slovakia
关键词
von Karman system; variational inequality; viscoelastic plate; semidiscretization; penalization; VONKARMAN EQUATIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with systems consisting of a nonlinear evolution variational inequality for the deflection and a nonlinear quasistationary equation for the Airy stress function. The systems describe moderately large deflections of thin viscoelastic plates with an inner obstacle. We distinguish two kinds of problems. Pseudoparabolic variational inequality for the quasistationary deflections and the hyperbolic inequality for the dynamic case. In both cases we transform the original problem to one canonical inequality in a Hilbert space of deflections. The pseudoparabolic problem is solved using a semidiscrete approximation transforming the problem into the sequence of stationary variational inequalities. The hyperbolic problem is solved by the penalization method.
引用
收藏
页码:11 / 28
页数:18
相关论文
共 50 条
  • [21] Von Karman Equations in Lp Spaces
    Fattorusso, Luisa
    Tarsia, Antonio
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [22] BEM formulation for von Karman plates
    Waidemam, Leandro
    Venturini, Wilson S.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (10) : 1223 - 1230
  • [23] ON NONUNIQUENESS OF SOLUTIONS OF VON KARMAN EQUATIONS
    KNIGHTLY, GH
    SATHER, D
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1970, 36 (01) : 65 - &
  • [24] On the instability of von Karman vortex streets
    Kochin, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 24 : 19 - 23
  • [25] SOME RECOLLECTIONS OF THEODORE VON KARMAN
    SEARS, WR
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (01): : 175 - &
  • [26] A GENERALIZED VON KARMAN INTERPOLATION FORMULA
    CARHART, RA
    KOSTINSKI, AB
    PHYSICS LETTERS A, 1988, 133 (03) : 149 - 153
  • [27] Von Karman equations in Lp spaces
    Fattorusso, Luisa
    Tarsia, Antonio
    APPLICABLE ANALYSIS, 2013, 92 (11) : 2375 - 2391
  • [28] Von Karman vortex streets on the sphere
    Chamoun, George
    Kanso, Eva
    Newton, Paul K.
    PHYSICS OF FLUIDS, 2009, 21 (11) : 1 - 10
  • [29] VARIATIONAL INEQUALITIES
    FRIEDMAN, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A129 - A129
  • [30] VARIATIONAL INEQUALITIES
    LIONS, JL
    STAMPACC.G
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (03) : 493 - &