On nonstationary von Karman variational inequalities

被引:0
|
作者
Bock, Igor [1 ]
Jarusek, Jiri [1 ]
机构
[1] Slovak Tech Univ, FEI, Dept Math, Bratislava 81219, Slovakia
关键词
von Karman system; variational inequality; viscoelastic plate; semidiscretization; penalization; VONKARMAN EQUATIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with systems consisting of a nonlinear evolution variational inequality for the deflection and a nonlinear quasistationary equation for the Airy stress function. The systems describe moderately large deflections of thin viscoelastic plates with an inner obstacle. We distinguish two kinds of problems. Pseudoparabolic variational inequality for the quasistationary deflections and the hyperbolic inequality for the dynamic case. In both cases we transform the original problem to one canonical inequality in a Hilbert space of deflections. The pseudoparabolic problem is solved using a semidiscrete approximation transforming the problem into the sequence of stationary variational inequalities. The hyperbolic problem is solved by the penalization method.
引用
收藏
页码:11 / 28
页数:18
相关论文
共 50 条
  • [1] On semicoerciveness, a class of variational inequalities, and an application to von Karman plates
    Goeleven, D
    Gwinner, J
    MATHEMATISCHE NACHRICHTEN, 2002, 244 : 89 - 109
  • [2] On nonstationary von Karman equations
    Bock, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (10): : 559 - 571
  • [3] A variational property of the von Karman plate problem
    Davini, Cesare
    Paroni, Roberto
    MATHEMATICS AND MECHANICS OF SOLIDS, 2021, 26 (02) : 166 - 178
  • [4] Variational study of bifurcations in von Karman equations
    Jin, Rongrong
    Lu, Guangcun
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (03) : 567 - 590
  • [5] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [6] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [7] Von Karman Equations
    Fattorusso, Luisa
    Tarsia, Antonio
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 286 - +
  • [8] VON KARMAN VORTICES
    RICHARDSON, EA
    MECHANICAL ENGINEERING, 1971, 93 (07) : 52 - +
  • [9] From the classical to the generalized von Karman and Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 470 - 486
  • [10] The Von Karman constant retrieved from CASES-97 dataset using a variational method
    Zhang, Y.
    Ma, J.
    Cao, Z.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (23) : 7045 - 7053