Analysis on road crash severity of drivers using machine learning techniques

被引:0
|
作者
Mittal, Mohit [1 ]
Gupta, Swadha [2 ]
Chauhan, Shaifali [3 ]
Saraswat, Lalit Kumar [4 ]
机构
[1] Ctr Rech Informat Signal & Automat Lille CRIStAL, Nord Europe, INRIA, Lille, France
[2] Thapar Inst Engn & Technol, Dept Comp Sci & Engn, Patiala, Punjab, India
[3] Prestige Inst Management, Dept Management, Gwalior, India
[4] Raj Kumar Goel Inst Technol, Dept Comp Sci & Engn, Ghaziabad, India
关键词
injury severity; collision data; fatal accidents; machine learning; INJURY SEVERITY; PROBIT; ACCIDENTS; MODELS;
D O I
10.1504/ijesms.2022.123344
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traffic accidents are significant general well-being concerns, bringing a large number of deaths and injuries around the globe. To improve driving safety, the examination of traffic data is basic to discover factors that are firmly identified with lethal mishaps. In this paper, our main objective to evaluate the severity based on various factor to reduce the road accidents and enhance the safety. Therefore, a long range of factors are considered to evaluate severity into two types, either fatal severity or non-fatal severity. Out of all the factors, we have evaluated the top ten features that are most important with the help of CART, random forest and XGBoost algorithm. For prediction of severity, we have considered the logistic regression, ridge regression and support vector machine regression. The experimental results show that fatal severity is higher for fog weather condition, heavy vehicles such as truck, male drivers and old age drivers.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 50 条
  • [21] Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
    Zhu, Shengxue
    Wang, Ke
    Li, Chongyi
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (21)
  • [22] Applying Explainable Machine Learning Techniques in Daily Crash Occurrence and Severity Modeling for Rural Interstates
    Wei, Zihang
    Zhang, Yunlong
    Das, Subasish
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (05) : 611 - 628
  • [23] Using support vector machine models for crash injury severity analysis
    Li, Zhibin
    Liu, Pan
    Wang, Wei
    Xu, Chengcheng
    ACCIDENT ANALYSIS AND PREVENTION, 2012, 45 : 478 - 486
  • [24] ROAD TRAFFIC CRASH CASUALTY INJURY SEVERITY CRASHES INVOLVING YOUNG DRIVERS COMPARED WITH OLDER DRIVERS
    Jones, S. J.
    Palmer, S. R.
    INJURY PREVENTION, 2010, 16 : A148 - A148
  • [25] Road Accident Analysis using Machine Learning
    Patil, Jayesh
    Prabhu, Mandar
    Walavalkar, Dhaval
    Lobo, Vivian Brian
    2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2020, : 108 - 112
  • [26] Accident analysis and severity prediction of road accidents in United States using machine learning algorithms
    Reddy, Sri Siddhartha
    Chao, Yen Ling
    Kotikalapudi, Lakshmi Praneetha
    Ceesay, Ebrima
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 805 - 811
  • [27] Comparative Analysis on the Prediction of Road Accident Severity Using Machine Learning Algorithms<bold> </bold>
    Kushwaha, Manoj
    Abirami, M. S.
    MICRO-ELECTRONICS AND TELECOMMUNICATION ENGINEERING, ICMETE 2021, 2022, 373 : 269 - 280
  • [28] Cervical Cancer Severity Characterization Using Machine Learning Techniques
    Jadhav, Varsha S.
    Yakkundimath, Rajesh
    Konnurmath, Guruprasad
    INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY, 2024, 22 (04)
  • [29] Code smell severity classification using machine learning techniques
    Fontana, Francesca Arcelli
    Zanoni, Marco
    KNOWLEDGE-BASED SYSTEMS, 2017, 128 : 43 - 58
  • [30] Severity analysis of road transport accidents of hazardous materials with machine learning
    Shen, Xiaoyan
    Wei, Shanshan
    TRAFFIC INJURY PREVENTION, 2021, 22 (04) : 324 - 329