PolSAR Image Classification Using Generalized Scattering Models

被引:0
|
作者
Maurya, H. [1 ]
Panigrahi, R. K. [1 ]
机构
[1] Indian Inst Technol, Roorkee, Uttar Pradesh, India
关键词
POLARIMETRIC SAR DATA; 4-COMPONENT DECOMPOSITION; MATRIX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a new model-based method for polarimetric synthetic aperture radar (PolSAR) image classification. The conventional single-and double-bounce scattering models do not have contributions on T-33 element of coherency matrix. The T-33 element of coherency matrix accounts for the cross-polarization power. Surfaces having azimuth slopes and oriented man-made structures generate significant amount of cross-polarization power. In the proposed decomposition scheme, generalized single-and double-bounce scattering models are utilized to address this cross-polarization power. The proposed decomposition scheme is experimentally verified on Radarsat-2 San Francisco data. Experimental results are analyzed in terms of normalized means of scattering powers and percentage of negative power pixels which clearly indicate the effectiveness of the proposed decomposition scheme.
引用
收藏
页码:408 / 412
页数:5
相关论文
共 50 条
  • [21] Supervised Classification of Fully PolSAR Images Using Active Contour Models
    Santana-Cedres, Daniel
    Gomez, Luis
    Trujillo, Agustin
    Aleman-Flores, Miguel
    Deriche, Rachid
    Alvarez, Luis
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (07) : 1165 - 1169
  • [22] EXPLORING CONVOLUTIONAL LSTM FOR POLSAR IMAGE CLASSIFICATION
    Wang, Lei
    Xu, Xin
    Dong, Hao
    Gui, Rong
    Yang, Rui
    Pu, Fangling
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8452 - 8455
  • [23] Classification for Polsar image based on holder divergences
    Pan, Ting
    Peng, Dong
    Yang, Xiangli
    Huang, Pingping
    Yang, Wen
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7593 - 7596
  • [24] PolSAR Image Classification Based on Discriminative Clustering
    Wei Zhiqiang
    Bi Haixia
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (12) : 2795 - 2803
  • [25] Polarimetric Convolutional Network for PolSAR Image Classification
    Liu, Xu
    Jiao, Licheng
    Tang, Xu
    Sun, Qigong
    Zhang, Dan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05): : 3040 - 3054
  • [26] SUPERVISED POLSAR IMAGE CLASSIFICATION BY COMBININGMULTIPLE FEATURES
    Huang, Xiayuan
    Nie, Xiangli
    Qiao, Hong
    Zhang, Bo
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 634 - 638
  • [27] A Polarimetric Scattering Characteristics-Guided Adversarial Learning Approach for Unsupervised PolSAR Image Classification
    Dong, Hongwei
    Si, Lingyu
    Qiang, Wenwen
    Miao, Wuxia
    Zheng, Changwen
    Wu, Yuquan
    Zhang, Lamei
    REMOTE SENSING, 2023, 15 (07)
  • [28] COMPLEX-VALUED SPATIAL-SCATTERING SEPARATED ATTENTION NETWORK FOR POLSAR IMAGE CLASSIFICATION
    Fan, Zhaohao
    Ji, Zexuan
    Fu, Peng
    Wang, Tao
    Shen, Xiaobo
    Sun, Quansen
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1723 - 1726
  • [29] Adversarial Reconstruction-Classification Networks for PolSAR Image Classification
    Chen, Yanqiao
    Li, Yangyang
    Jiao, Licheng
    Peng, Cheng
    Zhang, Xiangrong
    Shang, Ronghua
    REMOTE SENSING, 2019, 11 (04)
  • [30] Contextual PolSAR image classification using fractal dimension and support vector machines
    Aghababaee, Hossein
    Amini, Jalal
    Tzeng, Yu-Chang
    EUROPEAN JOURNAL OF REMOTE SENSING, 2013, 46 : 317 - 332