ISOKANN: Invariant subspaces of Koopman operators learned by a neural network

被引:8
|
作者
Rabben, Robert Julian [1 ,2 ]
Ray, Sourav [1 ]
Weber, Marcus [1 ]
机构
[1] Zuse Inst Berlin ZIB, Takustr 7, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, Str 17 Juni 135, D-10623 Berlin, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 11期
关键词
Neural networks - Mathematical operators;
D O I
10.1063/5.0015132
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The problem of determining the rate of rare events in dynamical systems is quite well-known but still difficult to solve. Recent attempts to overcome this problem exploit the fact that dynamic systems can be represented by a linear operator, such as the Koopman operator. Mathematically, the rare event problem comes down to the difficulty in finding invariant subspaces of these Koopman operators K. In this article, we describe a method to learn basis functions of invariant subspaces using an artificial neural network.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] INVARIANT SUBSPACES OF ALMOST UNITARY OPERATORS
    SICKLER, SO
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1975, 24 (07) : 635 - 650
  • [32] Invariant subspaces for polynomially bounded operators
    Ambrozie, C
    Müller, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) : 321 - 345
  • [33] Invariant subspaces for products of Bishop operators
    Chalendar, Isabelle
    Partington, Jonathan R.
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (3-4): : 719 - 727
  • [34] INVARIANT SUBSPACES AND OPERATORS OF CLASS (S)
    SALINAS, N
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 42 (02) : 497 - &
  • [35] Maximal invariant subspaces for a class of operators
    Guo, Kunyu
    He, Wei
    Hou, Shengzhao
    ARKIV FOR MATEMATIK, 2010, 48 (02): : 323 - 333
  • [36] INVARIANT SUBSPACES OF COMPLETELY CONTINUOUS OPERATORS
    ARONSZAJN, N
    SMITH, KT
    ANNALS OF MATHEMATICS, 1954, 60 (02) : 345 - 350
  • [37] Operators similar to their restrictions to invariant subspaces
    Ji, Youqing
    Xu, Xinjun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 748 - 767
  • [38] α-FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES
    Sanchez-Perales, S.
    Palafox, S.
    Djordjevic, S., V
    OPERATORS AND MATRICES, 2019, 13 (04): : 921 - 936
  • [39] Minimal invariant subspaces for composition operators
    Gallardo-Gutierrez, Eva A.
    Gorkin, Pamela
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (03): : 245 - 259
  • [40] LATTICES OF INVARIANT SUBSPACES OF CERTAIN OPERATORS
    OSILENKER, BP
    SHULMAN, VS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (01) : 66 - 67