Density functional theory study into H2O dissociative adsorption on the Fe5C2(010) surface

被引:25
|
作者
Gao, Rui [1 ]
Cao, Dong-Bo [1 ]
Liu, Shaoli [1 ]
Yang, Yong [1 ]
Li, Yong-Wang [1 ]
Wang, Jianguo [1 ]
Jiao, Haijun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Univ Rostock, Leibniz Inst Katalyse eV, D-18059 Rostock, Germany
基金
中国国家自然科学基金;
关键词
DFT; Iron carbide; H2O dissociation; Surface oxidation; FISCHER-TROPSCH SYNTHESIS; RAY-ABSORPTION SPECTROSCOPY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; WATER-ADSORPTION; IRON CATALYSTS; BASIS-SET; FE(100); FE5C2(100); OXIDATION;
D O I
10.1016/j.apcata.2013.09.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spin-polarized density functional theory calculations (GGA-PBE) have been carried out to study H2O adsorption and dissociation on the Fe5C2(010) surface. It is found that the iron region on the Fe5C2 (010) surface is active for H2O adsorption and dissociation, while the carbon region is inactive. For H2O adsorption in the iron region, H2O prefers the top site of the surface iron atoms, and significant hydrogen bonding interaction has been found at high H2O coverage on the basis of the computed adsorption energies and the intermolecular O-H distances. In the iron region H2O dissociation (H2O -> H + OH; OH -> H + O) is favored both kinetically and thermodynamically. On one O pre-covered surface, O-assisted H2O dissociation becomes favorable kinetically (O + H2O -> OH + OH) and further OH dissociation (OH -> H + O) becomes difficult thermodynamically. Upon the increase of surface O coverage, H2O dissociation becomes difficult, while H-2 formation from the surface adsorbed H atoms becomes easy. On the potential energy surface, the dissociation of four H2O molecules into four surface O and four H-2 molecules (4H(2)O(g) -> 4O(s) + 4H(2)(g)) is still thermodynamically favorable by 0.63 eV, and the iron region is fully covered by surface oxygen atoms. Thermodynamic analysis reveals clearly that the catalyst surface has always adsorbed oxygen atoms under water environment and their number in the iron region depends on temperature and water content; and high temperature and low H2O partial pressure can maintain the catalyst stability and excess H2O partial pressure will result in full oxidation. For the oxidation of one surface carbon atom, it is necessary to migrate one of the four adsorbed oxygen atoms from the iron region to the carbon region, and the H2O assisted CO2 formation is more favorable than the direct CO2 formation. The overall surface carbon oxidation, FexCy + 4H(2)O(g) -> O-2 FexCy-1 + CO2(g) 4H(2)(g), is thermodynamically accessible. Detailed comparisons show that the Fe(100) and Fe5C2(010) surfaces are very similar in H2O adsorption and dissociation at low coverage. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 383
页数:14
相关论文
共 50 条
  • [41] Competitive Adsorption of H2O and SO2 on Catalytic Platinum Surfaces: a Density Functional Theory Study
    Ungerer, Marietjie J.
    Santos-Carballal, David
    van Sittert, Cornelia G. C. E.
    de Leeuw, Nora H.
    SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 2021, 74 : 57 - 68
  • [42] Study of the [Cr(H2O)5NO]2+ complex via density functional theory
    Cheng, HY
    Chang, SY
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2005, 52 (03) : 415 - 420
  • [43] O2, CO2, and H2O Chemisorption on UN(001) Surface: Density Functional Theory Study
    Li, Ru-song
    He, Bin
    Wang, Fei
    Peng, Xu
    Wang, Hua
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2014, 27 (01) : 20 - 28
  • [44] O2,CO2,and H2O Chemisorption on UN(001)Surface:Density Functional Theory Study
    Ru-song Li
    Bin He
    Fei Wang
    Xu Peng
    Hua Wang
    ChineseJournalofChemicalPhysics, 2014, 27 (01) : 20 - 28
  • [45] Adsorption of CO2 on Bi2MoO6 (010) surface: A density functional theory study
    Peng, Yanhua
    Tian, Fenghui
    Zhang, Yan
    Yu, Jianqiang
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 743 - 747
  • [46] Density Functional Study of the C Atom Adsorption on the α-Fe2O3 (001) Surface
    董长青
    张晓磊
    杨勇平
    结构化学, 2011, 30 (01) : 17 - 24
  • [47] Density Functional Study of the C Atom Adsorption on the α-Fe2O3 (001) Surface
    Dong Chang-Qing
    Zhang Xiao-Lei
    Yang Yong-Ping
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2011, 30 (01) : 17 - 24
  • [48] Density function study of H2 adsorption on LiB (010) surface
    Wang Haiping
    Wang Xuemin
    Ge Fangfang
    Zhou Mingjie
    Wu Weidong
    Lu Tiecheng
    PHYSICA B-CONDENSED MATTER, 2010, 405 (07) : 1792 - 1795
  • [49] Density functional theory periodic slab calculations of adsorption and dissociation of H2O on the Cu2O(110):CuO surface
    Saraireh, Sherin A.
    Altarawneh, Mohammednoor
    CANADIAN JOURNAL OF PHYSICS, 2013, 91 (12) : 1101 - 1106
  • [50] A density functional theory study of the reactions of dichlorocarbene and isodichloromethane with H2O
    Li, YL
    Zuo, P
    Phillips, DL
    MOLECULAR SIMULATION, 2004, 30 (2-3) : 173 - 178